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A discussion of the rate and 'efficiency' of convergence of the method of Fourier synthesis is 
presented for the case of large departures of the assumed approximation from the correct structure. 
The Fourier synthesis is first reduced to its exactly equivalent minimum-residual solution, with 
inclusion of the effect of incorrect signs of the structure factors. A mathematical  expression is then 
obtained for the efficiency of convergence, ~F.s. (= calculated correction/actual correction re- 
quired), for an n-dimensional summation. ~F.s. is finally expressed as a function of U = 27~zJ/dmin.,  
where A is the r.m.s, error per atomic coordinate. (In the process, graphs are obtained for the 
integral reliability index, Rz = XW21[Fo[-IFcl] +,V,W~IFc[, as a function of U for both weighted 
and unweighted Fourier syntheses; these graphs are practically identical for 1-, 2- and 3-dimen- 
sional summations, and should be useful for estimating A directly from/7i.) The behaviour of ~F.8. 
under various conditions is discussed, and is found to be similar to ~s.D. for the methods of steepest 
descents and least squares. Curves are given for ~F.S. against U, against Uc = ~F.S. × U, and 
against Rz, all of which are useful under different conditions for (a) estimating ~F.S. and (b) 
speeding up the convergence by dividing the calculated corrections by ~F.S." The influence of 
neighbouring atoms and of statistical fluctuations on the reliability of the calculated value of ~F. s. 
is discussed analytically. 

1. Introduct ion 

In  Pa r t  I of this  series (Qurashi, 1953), the desirabi l i ty  
of evaluat ing the  rates of convergence of various 
methods  of s t ructure de terminat ion  was considered, 
and  'efficiency of convergence'  (for one app l ica t ion)  
of a n y  given method  for a parameter ,  uj, was defined 
a s  

(ui) = (Su#/SUjo, (Part  I, equat ion 1 (a)) 

where (~Ujo is the ac tua l  correction required and Ouic 
is the  correction obta ined  from one refinement.  

An expression was then  obtained for the efficiency, 
~S.D., applicable to the  methods  of modified steepest- 
descents and  to the  l inear approximat ion  to the 
method  of least squares.  I t  was shown (cf. Pa r t  I, 
equations (6) and  Fig. 5) t ha t  

where ~S 'D' (Xi )  = •F(Xi )  X VT ' f l (Xi )  ' 

vF(z~) = ( z  (1--2fihkz) WV2h ~)/(~ WV2h~), 
hkl hkl 

a n d  ~TT,~(Xi) is a s lowly vary ing  funct ion of h, It, l, 
of value  between 1 and  ~ in  the  pract ical  case. W 9' is 
the weighting funct ion  and  fihkz is the fraction of the  
F ' s  tha t  are given wrong signs by  the assumed ap- 
proximat ion  to the  structure.  Both  ~F and ~T,~ were 
ul t imate ly  expressed in terms of U = 2:~A/dmi,., where 
A is the  r.m.s, error per  coordinate, and drain, is the 

m i n i m u m  in terp lanar  spacing for the reflecting planes 
used in the summat ion .  Since the var ia t ion  of the  
atomic scattering-factor,  f ,  wi th  sin 0/~ (i.e. with 
h, k, l) is very  similar  for all the  effective atoms in a 
structure,  ~F becomes pract ical ly  ident ical  for all the  
parameters .  I t  was also remarked (Part  I, § 3, discus- 
sion of equat ion (6); and § 8, result  (6)) that ,  al though,  
for small  values of U, ~F approximates  to the effi- 
ciency of convergence, ~F.S., Of the method  of Fourier  
synthesis,  the value of ~]F.S. for large U is not  direct ly 
deducible from tha t  of ~F- The reason is t ha t  both 
processes of ref inement  are essential ly discontinuous, 
with the  discontinuit ies occurring at different  values 
of A (because of the factor ~z,~) so tha t  the  two 
methods  correct the phases of the  F ' s  at  different  
stages. 

We shall  now es tabhsh the precise relat ionship be- 
tween the two methods,  and convert  the Fourier  
synthesis  into a m i n i m u m  residual  problem whence an  
expression for ~F.S. will be derived. The contractions 
used in  Pa r t  I of this  paper  are used here also. 

2. The Fourier  synthes i s  as a part icular  case  of 
the m i n i m u m  res idual  so lut ion 

For the  special case when the Fo's are completely 
known (i.e. both in magni tude  and phase), Cochran 
(1948) has shown tha t  the Fourier  synthesis,  
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Qo(x,y ,z)  = ~ 2 F h k z e x p  --2~i h +k + l  , (la) 
hkl 

(corrected for series termination, etc.) yields exactly 
the same coordinates for the j th  atom as are got by 
minimizing 

1 R~ = ~ ~ (Fo-Fo)~. (1~) 

Since the phases of the Fo:s are assumed to be known, 
this equivalence can apply oMy to the ultimate results 
of the refining process. What happens in practice is 
that  a certain approximation to the structure is as- 
sumed or is otherwise known, the structure factors, Fc, 
are calculated for this approximation, and a Fourier 
synthesis is performed using coefficients whose mag- 
nitudes are those of Fo and whose phases are those of 
Ft. Thus F o in the synthesis (la) is t 9 be replaced by 
Fo~, where 

IF~I = lFol, and arg Fo¢ = arg F~, (2a) 

and the first application of the Fourier method gives 
the following (real) electron-density distribution: 

~o~(x, y, z) -- -~ .~ Foc exp - 2 ~ i  h ~ +/~ + l  
hkl 

1 
; = 2 Foo e . ~  [ - i v ] .  (25) 

Vh~ .. - . . ' .  
• . ; . . . . .  -: 

The refined coordinates of tke.,j~h ato~h ".~tl be given 
by the corresponding peak" in this ~o~ synthesis, i.e. by 
those values of X/o¢, yioc:.Z./oc, which s a t i s f y .  

~ 1 "'" ]: '"h:': - 
( )  - .~, Fo~2~-i'e'~p:[.~i*2~j , (3) 

0 = -~x ~ioc, ~So~,~oc V ~,~z a "" • ... 

with similar equations for ~o¢/~y and 8Oo¢/~z. 
Now, consider a set of atomic coordinates, (x/ct, Y~t, 

zi~t), where the subscript 't' is added to distinguish 
these variable coordinates from the other sets• If we 
calculate F¢t from the formula 

n 

F~t = ,~ fj exp [iv/~t], 
i=1 

and then perform a Fourier synthesis with these F's,  
namely 

1 
e,.~(x, y, z) = ~ £ F~, exp [ - ~ v ] ,  

hA'/ 

it is clear that  the electron-density peaks will occur 
at the points (x/~t, Y ict, z/ct), etc.,* i.e. we have 

1 h 
0 = - ~" F~,2 .  :: i exp [-ivct ] (4) 

\ ~x/zjct, yi~t, ~.itt V ~ a 

etc. From equations (3) and (4), after putting xia=xioc, 
etc., we get for the x coordinate of the j th  atom in the 
f irs t  Fourier refinement, 

L hkl a J xia = Xjoc, et~., 

f i ~Xict Jx]a=Xjoc, etc. 

0 Z 1  ½ 7, I o0-FoI _ , 
(5) 

J jct=Zjoc, etc. 

and similar equations for Yio¢ and zio c. Thus, the 
coordinates of the j th  atom obtained from the f irst  
Fourier synthesis can be got by minimizing 

.X z- IFoc-F.I ~ (6) RS = hkZ fj 

where the Fo~'s are fixed at the start and the Fa 's  
will be varied during the minimizing procedure. The 
values of xja, Yjcz, zja that  make R i a minimum have 
now to be found; when this has been done, the effi- 
• ciency V/F.z.(Xj) will be given by 

~xj~ _ Xjc- [xja] for ~ ' ~ m  R 

I t  must be stressed here that  the general minimum- 
residual (or least-squares) solution as in (6) is to be 
distinguished from the linear approximation to the 
least-squares, in which it is assumed that  the deriva- 
tives, ~F/~xja, etc., are linear functions of the para- 
meters, and which is therefore suited to actual cal- 
culation. In numerical work, it is usual to designate 
this approximation as 'the method of least squares'; 
as such this method has been discussed in detail in 
Part  I of this paper. I t  is also pertinent to remark that  
the approximate gradient formula, 

Axji= -(~D/~xi)j/C(@~) s, (Cochran, 1951, equation (2.7)) 

used to calculate the shifts from a difference electron- 
density map is exactly equivalent to this linear approx- 
imation (Cochran, 1951, remark after equation (2-7)); 
therefore, the efficiency of convergence for this for- 
mula is also exactly as in Part  I. 

3. The simplified minimizing procedure 

We shall here deal with the case of a centrosymmetrie 
structure or projection, and, for comparison with the 
results of Part  I, we shall treat the general case of the 
weighted Fourier synthesis (d. Cochran, 1948) in 
which each F is multiplied by a positive factor, W 2, 
which is a function* of h, k, 1. In  this case, equation 
(6) becomes 

* Provided  t h a t  the  series are su i tab ly  corrected for series- 
t e rmina t ion  effects by  one of the  usual  methods .  I f  difference 
syntheses  are used, this  error is of course largely corrected for. 

* W h e n  W 2 is a smooth  monotonic  func t ion  of d/~z, its 
in t roduc t ion  is similar to  t h a t  of an  artificial  t e m p e r a t u r e  
factor ,  and  does no t  require Cochran 's  i tera t ive  process. 
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W 2 W 9. 
Rj  = 2 (Fo~-F~)~  = 2 ;  ( ( F o - F c 3 + ( F o ~ - F o ) )  ~ 

W 2 W ~ 
__ . ,~ ( F o _  F a)2 _[_ . ~  2 2 
- (Fo~-Fo+2F~t(Fo-Fo~))  

W 2 W 2 
= .~, (Fo-Fct)  2 + . ~ - -  2Fa(Fo-Foc)  (6a) 

since, in the centric case, Foe = +Fo. Clearly the 
second t e rm is identical ly zero for all reflexions t ha t  
have arg Fo = arg F¢; however,  for the reflexions t h a t  
have the signs of 2' 0 and 2"¢ opposite, 

(2"0-2"0¢) = 2"0- ( -  2"0) = 22"0, 

so t ha t  if ~ denotes a summat ion  over all such 

reflexion~ only, we can write 

W ~ W 2 
= --h + 2"o2" , . 

The impor t an t  point  to be noted  about  the sum- 

mat ion  ~a~ is t h a t  the indices of the reflexions in- 

cluded in i t  are fixed at  the  outset,  and are not to be 
varied during the  minimizat ion of R~. The general 
procedure for the minimizat ion is to evaluate  R1 as a 
funct ion of all the  atomic coordinates, xi, Yi, zi, etc., 
describing the  approach of the s t ructure  to its correct 
configuration, then  to pu t  

~Ri/~x i = ~R~/~y i = OR~/~zj = O, 

and to solve for xi, y~, z], accepting only such solutions 
as make the second derivat ives posit ive;  these will be 
the coordinates of the j t h  a tom for min imum Ri. The 
procedure is then  to be repeated for all j .  

We can, however,  effect a great  simplification by  
not ing certain features common to ~]~.s. and ~]~ 
(the la t ter  corresponding to the linear least-squares 

method).  First ,  if f = 1 , then  f i / f  does 

not  va ry  rapid ly  over the useful range of sin 0/~ and 
we can therefore replace f j  by  f in equat ion (6b), 
which makes  it  possible to pu t  down a single set of 
equations ~R/~xi = O, etc., for s imultaneous solution. 
Fur ther ,  as pointed out in the introduct ion,  when fi  
has been replaced by  f,  ~ is identical for all the  para- 
meters,  so t h a t  we can expect  the same behaviour  for 
~ . s .  In  any  case, if we take  ~ . s .  as being identical  
for all the  parameters ,  and then  minimize R, we shall 
f inally obtain the value of ~ . s .  representing ~ . s .  
averaged over all the  variable coordinates, and this 
value will represent  the individual  values of ~ . s .  to 
a high accuracy.* This assumpt ion implies tha t ,  in our 
analysis, we only need to consider the case when all 
the errors, 6xi, (Syi, 6zi, etc., decrease in the same ratio, 

* The effect  of depar tu res  of ~/F.S. f rom the  average  value,  
~F.&, is ana lysed  in Append ix  3. 

so tha t ,  for the  purpose of minimizing R in equat ions 
(6), the  3n variables, xi, Yi, zi, can be replaced by  one 
independent  variable,  which m a y  be a suitable func- 
t ion of these xi's, etc. For, considering the  reflexions 
in a small range of Bragg angles, we know from Pa r t  I, 
equat ion (11), t ha t  a good paramete r  is 

u = ]/((6v) ~) = 2z  ~ ((~x)~+ ~ (Oy)~+~(Sz)  ~. 

= 2zA/dhk~, 

where A is the r.m.s, error (in _~) per coordinate. For  
our present  analysis it  is more convenient  to use the  
pa ramete r  

t = A / A o ,  (6c) 

where A o is the  initial  value of A. Clearly 't ' is a linear 
funct ion of A, and ranges from t = 1 for the  assumed 
approximat ion  (i.e. 2 , c t -  2,¢) to t = 0 for the correct 
s t ructure  (i.e. F~t- -Fo) .  Also, by  comparison with 
the  definition of ~]F.s., if tm is the  value of 't ' for the  
min imum of R, then  

~F.s. = 1--tm. (6d) 

4. Location of m i n i m u m  of R 

Rewri t ing equat ion (6b) with f in place of f#  and writ- 
ing R = R(t) to show its dependence on 't ' , we get 

W 2 W 2 
R(t) =.~,hk~ - - f  ( F ° - f  a )2+ '~  F o f  ct 

= . ~ W 2 f ( q ) o - q p c t ) z + ~ ,  4 W 2 f  q)ocfc t (q) = F/ f )  
hkl hkl 

= 2 W2f[(q~o-qJ~)~+4(~q%q~¢t/2"l)o],  (7) 
hkl hkl hkl 

where the summat ions  within the square brackets  are 
carried out  in a small range of h, k, l, (or of Bragg 
angles, O+dO/2, since the averages are u l t imate ly  
functions of dhkz only). To evaluate  the quanti t ies  in 
the square brackets,  we need to know three different 
distr ibutions : 

(1) for ~ ,  
(2) for ~0' when ~o is known, and 
(3) for ~ct when ~vo and ~v¢ (-(q~t)t=l)  are both  

known. 

The first  is the  simple Gaussian dis t r ibut ion given 
by  Wilson (1949), the  second has been given by  Luzzat i  
(1952) and also in P a r t  I of this paper  (Qurashi, 1953), 
and the th i rd  is derived in Appendix I. (~o-~V~t)~ is 
easily obta ined as 

(~Vo-~V~t)~ = (2 ~Y Nj (cos Vio-COS via)) 2 (Nj = f j / f )  
J 

= 4 ~," 4N~ cos 2 l(vjo+Vja ) sin 9 ½-Svjt 
i 

(~v;~ = (Vjo-Vj~)  = t~Vjo) 

= 4 sin 9 ½~vjt.a~,2N ~ = a9.4 sin 9. ½t(~Vjo, 
J 

(a 2 = ~ = 2 :  2N~) 
i 

31" 
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whence, using a Gaussian distribution (Part I, Ap- 
pendix 2) for ~V~o, we get 

(q~o-q~a)~ = 2 ~ ( 1 - e x p  [-½u~t~]), (8) 

where u = ]/(((~V~o) ~) = 2r~A/d. 

The second term in equation (7) requires some in- 
volved integrations for its evaluation, and the process 
is therefore outlined in Appendix 2. I t  turns out tha t  

(..~., CpoCPct/.~ l)o = -~-~ (atl"a+btl'b) , (9) 
where ~kl hkl 

/ 'a = ( 1 - e x p  [-u2/2]) 

x {tan -~ (exp [ & ] -  1)½ + ( 1 -  exp [-u~])½), 

exp [-t2u2/2] - exp [-(1-t)2u2/2] 
at ---- 1 -  e x p  [ - - u 2 / 2 ]  ' 

/~ = (1 + exp [-u~/2]) 

× {tan -1 (exp [ & ] -  1 )½- (1 -  exp [-u~])~) ,  

bt = e x p  [ - t 2 u 2 / 2 ]  + e x p  [ -  (1 - t )2u2/2]  

1 + exp [ - -U2 /2 ]  

9(a) 

Substitution of (8) and (9) in (7) finally gives 

1 (atF~,+btF~)) R(t) = ~ 2W2fo'2((1-exp [-½u2t2])A-~ 

(10) 
If we p u ( t  = 1 and divide by 

W 2 

this expression can be used to give the reliability index, 

W2 2 / ~  W2 
( R T  = 2 -  z- ( l~ol - IF~l)  I~¢1 ~, 

h~l J T 

as a function of u. The dependence of R'  on u, when 
the summation extends over an infinitesimal range of 
Bragg angles, is 

R~ = ~/[1- exp [ - u ~ / 2 ] -  ~ {(1-exp I-u2])  ½ 

- e x p  [-u2/2] tan -~ (exp [ & ] -  1)~}]. 

This is shown by the broken line in Fig. 1 and is to 
be compared with Luzzati 's (1952) curves* for 

* Luzza t i ' s  ca lcula t ions  give dif ferent  curves  for  1, 2 and  

3-dimensional  summat ions .  Howeve r ,  when  we eva lua te  IAr[~ n 
for  an  n-dimensional  ~ m m a t i o n ,  i t  tu rns  ou t  t h a t  Luzza t i ' s  
a ~ is re la ted  to  it b y  

so t h a t  his a~ is ident ical  w i th  the  r.m.s, error  per coordinate, 
des igna ted  b y  'A' in our  analysis.  I t  follows t h a t  Luzza t i ' s  
D = exp [-2n~l~l~a ~] becomes  

D ---- exp [--½4~t~A~/d a] ---- exp [--½u z] (l~l ~ l /d~ l )  

in o.ur no ta t ion ,  and  a single curve in  t e rms  of 'u '  is ob ta ined  
fo r  1, 2 and  3-dimensional  summat ions .  

0 2 ~. 6 8 

Fig.  1• Curves  for  the  rel iabi l i ty index,  

Re = (llFoI-WclI-W~l)e, 
agains t  u = 2~tA/d, and  for the  integral  rel iabi l i ty index,  
Rz = ZW~lWol-[F=II-Z'w~IF=I against U = 2~/l /dmim. The 
broken  line is for R~ = V((IFol-IF~!)~-IF=I2)a. 

R,  = ( I IF . I - IF~II+IFo3, ,  

cf. full line. I t  is noteworthy tha t  R~"Re for all u; 
an effect directly attributable to the reversal of signs of 
some Fo's, since R~ = (½~t)½R 0 when all these signs 
are correct• For comparison with experimental values 
of the reliability index, it is desirable to calculate 
the 'integral value' of R over the full range of reflec- 
tions, viz. 

[ R , ] n  = 2:W~llFol-IFcll +2:W:lFcl 

= IV W~'fReu"-ldu/IV W~fu"-adu 
U 0 t - -  U 0 

( U/uo ~- dm= /d~. )  

for n dimensions. Curves for Rz for different values of 
W 9 are also drawn in Fig. 1. (R is used here in place 
of R'  because it is more usual to calculate •[ IFol- ]Fc[[, 
etc., instead of the squares. Also, the values of R z are 
not very sensitive to variation in u0, and therefore 
U/u o has been fixed as 10.) 

Differentiation of equation (10) with respect to 't' 
gives the equation for the value (t~) of 't' at  the 
minimum of R(t), viz. 

o = ..~ W V ~  ~ (2t,nU~ exp [--t~¢/2] 
hkl \ 

2 [Fa/dat\ dbt 
whence + ~ ~ I - ~ ) t :  I'b (--~)~)) , 

Yg 
tm ~ WVu~ exp [-t~u~/2] 

hkl 

: . 0 ) 5  
u 2 

= .g wV-ff [{tan-~ ( e~  [ ~ ] -  1)½ + ( l -exp [-~])½} 
hkl 

x {t exp [-t~u~/2]+ ( l - t )  exp [ -  (1-t)~u~/2]}~ 

+ {tan -1 (exp [ u ~ ] - l ) ½ - ( 1 - e x p  [-u2])  ½} 

x {t exp [- t2u~/2]-(1- t)  exp [--(1--t)2&/2]}tm] 
= ~ W2fu~{t exp [-t2u2/2] tan -x (exp [ & ] -  1)i 

hkl 
+ (1 - t ) exp  [-(1-t)2u2/2] (1 - exp  [-u2])~}~, (llb) 
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after subst i tu t ion for / '~ ,  (daddt), etc., and  simplifica- 
tion. 

The equat ion can be solved numer ica l ly  if the value 
of W~f is known. Since i t  was found in preceding 
analyses (Qurashi, 1953; Qurashi & Vand, 1953) tha t  

the form, whence 
W ~ p  • = d r w i t h  ~, ~.. n + 2 , 

is the most  suitable* weighting funct ion for the  least- 
squares ref inement  of an  n-dimensional  summat ion ,  
we shall  use a corresponding form (cf. the  factor 1If in 
equat ion (6)) for the present  analysis,  viz. 

W~f  = d r oc u -r with v - ~ n + 2 ;  

and  shall  work with two values of v, viz. v = n + 2 ,  
and v = n +  1, for comparison wi th  the  corresponding 
cases of the  ref inement  by  least squares. Also, we shall  so tha t  
use the s y m b o l - , , r  ~ . s .  to denote the  value of ~F.s. for 
an  n-dimensional  Fourier  synthesis  wi th  W~f  = d r. 
We need only consider the  one-dimensional  case, since 
i t  can be shown tha t  the expression for ~ . s .  is the 
same for a given value of ( v - n ) ;  cf. P~rt  I, § 5(b), 
where i t  is proved tha t  
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+...}] + ( 1 -  tin) { u - u  a --tm)2 

v 1~ ~ 
du 

2 "j ' 

U ~ 3 -~ ,  ) 
(t,.)~ 1 - t  2 5 - , ,  

i v u3-rdu 

2 u. { 1 - - - -  

l U u2-Vdu 
U o 

5 4 - ~  

6 6 - ~  
U2(1-~2)  ~t-. . . } ,  (12b) 

~ n ,  n - b l  --1, 2 F.s. = r/F.s. = 1 -  (tm)~=2 

= 1 _ U  ( l + q S ) { 1 - ~ U 2 ( l + ¢ ~ ) + . . . } ,  

=~, ~+2 -1, 3 ~ (13) 
'IF.s. = ~F.s. = 1-- (tm)~= a 

= 1 u 2 ( 1 - ~ )  
x~ log 1/--------~ { 1 - A U ~ ( I + q ) ~ ) + " "  "}" 

5.  E v a l u a t i o n  of  ~F . s .  

On replacing the summat ions  by  integrations,  which 
is always val id  since A / a  < 0.1, i.e. the  r.m.s, error 
per coordinate is less t h a n  1/10th of the  cell dimension 
(cf. Pa r t  I, § 5), we obta in  (in one dimension),  

f ~tm u 2-~ exp [ - t~u2 /2 ]du  
fro 

= f U u2-rdu{tm exp [ - t ~ & ] 2 ]  t an  -1 (exp [u2] - 1)½ 
i/ u 0 

+ ( 1 - t ~ ) e x p [ - ( 1 - t m ) g U 2 / 2 ] ( 1 - e x p [ - & ] ) ½ } ,  (12a) 

where the l imits  of integrat ion are clearly related to 

These results are seen to be very  close to the  
corresponding equat ions (13) in  Pa r t  I of this  paper,  
thus  confirming the  idea tha t  rlF.S.~rlF. For very  
large U, when ~ - +  0 (i.e. tm ~ 1), i t  is desirable to 
transpose the  first  t e rm on the r igh t -hand  side of 
equat ion 12(a). This gives 

I l; } $m U 2-v exp [-- t2mU~/2] -- t an  -1 (exp [u ~] -- 1) ½ du 
~0 

= (1-tin) u 2 - ~ e x p [ - ( 1 - t m ) e u ~ / 2 ] ( 1 - e x p [ - u 2 ] ) ½ d u ,  
UO 

whence it  follows tha t  (1--tm) > 0, since t m and the 
the  m i n i m u m  and m a x i m u m  indices, h 0 and  H, of the integrands on both sides are a lways positive. We can 
summat ions  as follows: solve the above integral  equat ion for large U (actually,  

q~ = uo/U ~ -- (ho-½) /H ~ - dmi~./d,~ax. . 

For small  U, the in tegrands  can be expanded in 
power series to give 

y~ U 

du -g . . - /  

__ fVU2_r[tm{u__ua/t2m 1 \  - +'} 
* It is to be noted that, for u ---- 2xeA[d < 1.0, the error, 

IlFo]-lFc]l-]Fc], varies as l[d, and the summands in equa- 
tion (11) are of the form Wgf×u 2 and W2f×u a, so that the 
effects of high- and low-angle reflexions are best equalized 
by using a power law for W2f rather than the exponential 
form, exp [--K (sin O[]t)2]. 

u 0 > 1) by  expanding some of the  funct ions  in powers 
of exp [ -u2] ,  viz. 

I 
U 

tm u 2-" exp [--t2mU2/2] 
U0 

× {e~p [-uy2]/(1-exp i-u2])½... }d~ 

I 
U 

-- (1 -tm) u 2-~ exp [ -  (1 -tm)2U2/2] 
UO 

whence x {1-½ exp [ - u ~ ] + . . .  } d u ,  

= 1 " " 1  1- t in  f u  u /  _~ u 2-r exp [ - ( 1 - ~ . } . ) u 2 ] d  

f u ~ , - x , v  ~2ug.12q,t u u 2-~ exp l-- t~/F.s.j / J'~ o 

U0 
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For ~ = 2, 3, this gives, for qSU = u 0 > 1, 

-~, 2 ~ ½~ exp [ -  ~2 U 2] / (~2 U 2) ] 

--I, 3 ~ 1 [ (14) 
r/~'s"--2 log l ' O  e x p / [ - ¢ 2 U 2 ] / ( ~ ) 2 U 2 )  " 

| °0' 

O-8 

0-6 

0"4 

0-2 

0-0. 
0 2 4 6 8 

o.s~'°~fi~.,o.~ 
0"2 

0"0 . . 

0 2 4 6 8 

Fig. 2. Curves for ~F.8., ~8.D. and  ~F (broken l i ne )aga ins t  
U = 2~A/dmm. for o p t i m u m  weighting, viz. (a) W~f=dn+ 1, 
(b) W2J = dn+ ~, for an n-dimensional  Fourier  synthesis.  

The corresponding results for ~F are again similar, 
viz. 

1, 2 2 ~7~ - -~5 exp [-½¢~U2]/(qS~U2) 
and 

2 
log 1/~b exp 

whence it is seen that  for large U, ~F.s. < ~7~ with 
corresponding weighting. For intermediate values of 
U, the integral equation can be solved by numerical 
methods. 

The solution is most conveniently carried out by 

fixing the values of t~ and of ¢ = uo/U , and then 
tabulating the integrals on either side of equation 
(12a) for a series of values of U; from these tabulated 
values it is a simple matter to find the particular value 
of U which fits the equation, i.e. makes the two sides 
equal.* This has been done for both ~ = 2 and ~ = 3, 
using a value of ~b = 1/10, and the results are shown 
graphically in Fig. 2, together with the corresponding 
curves for ~ and ~s.D. = ~FX~T,~- The variation 
of the curves with ~b is small, cf. Part  I, Fig. 1 ; there- 
fore only one value of ¢ has been used. 

6. Discuss ion  of results  and applications 

I t  is evident from the figure that  curves for ~F.s. 
follow the corresponding ones for ~TF closely, the two 
being practically coincident for ~ > 3. Also interesting 
is the fact that  for very large U, ~F.s. < ~TF, while 
for moderately large U, ~F.z. > ~F. However, when 
the comparison is made with ~s.~. (which is the 
quantity of practical interest), it is seen tha t  
~F.s. > ~S.D. for all values of U, and the two approach 
each other for very small and very large values of U; 
in the range of moderately large U (corresponding to 
0.6 < ~ < 0-2), ~F.s. is greater than ~s.D. by about 
25-40 %, which difference can be of considerable ad- 
vantage in the convergence of a rather poor approxi- 
mation to the correct structure. Apart from this 
feature, the curves are so similar that  the discussion 
of the corresponding curves in Part  I (§§ 5, 6, 7) will 
apply here also. Curves for ~F.s. against Uc are shown 
in Fig. 3(a), where 

Uc = ~F.s. x V = 2=(A x ~F.s.)ld=~,. = 2=Add~n.,  

A c being the r.m.s, correction per coordinate given by 
the one refinement. As before, the curves give two 
values of ~ for each value of Uc or A c, the lower value 
being for an approximation far removed from the 
correct structure. To determine which value of ~ is 

* I t  tu rns  out  t ha t  for tm < ½, there are two solutions for 
each value of t~n. One solution is t ha t  given by the  approxima-  
t ion (12b), while the  other  occurs at  U > 20. The la t te r  
solution is, however,  ruled out  because i t  gives a m a x i m u m  
value of R (i.e. the  second derivat ive ~2R/~t2 is negative).  

1"0" 

0"8 

0"6 

~ . S .  
0"4 

0"2 

0-0 
0"0 

0"0 
0"5 1:0 

~ -I- 1 . 

1"0 1"5 0"0 0"2 O.Z, 0-6 0"8 1"0 1"2 

1°0 , 

0"8 ~ ~ .  

0"2 ~' ---- n -F 1 ~ , x ~  

Fig. 3. Curves for ~F.S. (for an opt imal ly  weighted synthesis) against  (a) Uc = ~F.s. × U = 2rcAc/dmin., (b) the  convergence 
ratio, ~ = (Ac)~/(ZJc)l, for two successive refinements,  (c) the  integral reliability index, Ri  = XW2[IFol--]FcII+I:W2]Fc[; 
the  broken line is ~---- 1--Rz/0"828. 
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to be used, we can make use of the convergence ratio, 
-~ = (Ach/(A~)l, for two successive refinements, labelled 
(1) and (2). Curves for ~ . s .  against ~ are shown in 
Fig. 3(b). The region, ~ < 1, corresponds to the upper 
branch of the curves of Fig. 3(a), and in this region, 
the precise value of ~v.s. to be used can be read off 
accurately from the curves. For  ~ > 1, (corresponding 
to the lower branch in Fig. 3(a)), a precise determina- 
tion is difficult because of the rapid variation of ~v.s. 
with ~ and the somewhat large error inherent in the 
estimation of ~. However, we have ~F.S. < ½ in this 
region, so tha t  we can safely mult iply all the cal- 
culated corrections by 2, or even a little more, as in 
the case of the corresponding curves for ~S.D. in Pa r t  I. 

In  the region of small V, the following device can be 
used advantageously to determine an accurate value 
of ~/. A comparison of the graphs of :Fig. 2 with the 
corresponding curves for the reliability factor, RI, in 
Fig. 1, shows tha t  the variation of ~] with U is very 
similar to tha t  of (1-Rz/0-828) ; so tha t  we can expect 
a one-to-one relationship between V and Bz. The 
graphs for ~F.S. against Rz for the cases of v = n + 2  
and v = n + l  are shown in Fig. 3(c), and it is notable 
tha t  the straight fine, ~F.S. ~ 1-RI/0"828,  is a good 
approximation, particularly for the opt imum index, 
v = n+2 .  Thus, if Rz is calculated for the reflexions 
used in the Fourier synthesis, the appropriate value of 
~ . s .  can be read off from Fig. 3(c). However, it must  
be remembered tha t  the value of Rr calculated from 
the observed data  is always greater than  the theoretical 
value, owing to the effect of observational errors, etc., 
which may be of the order of 0.15 or so. Thus the curves 
of Fig. 3(c) can be used with satisfactory precision 
only for Rx---0.3 or more, i.e. for ~ < 0.6. When 
Rz < 0.4, it is definite tha t  ~ > 0.45, and therefore 
the upper branch of the curves of Fig. 3(a) can be 
used.* In  Appendix 3 we consider the effect of over- 
lapping atoms and of statistical fluctuations (in the 
averages in equation (7)) on the smallest useful value 
of #. For  properly weighted syntheses, this limit is of 
the order of 0.2 or less. 

Finally,  we must  note tha t  the above curves for 
~F.s. have been calculated for optimum weighted 
Fourier syntheses with W~f  ocd ~ and v N n + 2  for an 
n-dimensional summation. I t  is usual, however, to 
work with unweighted syntheses, i.e. to put  W ~ =  
constant. For  this case, we must  clearly replace 
u -~ ocd ~ by ' f '  in the integrals of equation (12a). We 
consider only the case of 2- and 3-dimensional sum- 
mations. For  a 2-dimensional summation, the index 
of 'u '  in equation (12a) is to be increased by uni ty  
(because the summations over h and k are replaced 
by the integration in polar coordinates, cf. § 5, Pa r t  I) ; 
so tha t  the integrands involved are of the type  

ua×f  = (2zcA/d)a×f oc f /d  a. 

* Graphs for ~&D. against  RI  can be used similarly in 
conjunct ion  wi th  the  curves for ~S.D. against  Uc in Fig. 3, 
P a r t  I.  These graphs are very like those in Fig. 3(c) here. 

Now, Fig. 4 shows the curve for f /d  a against sin 0/2 
(= 1/2d) for a sodium atom with a temperature  factor 

01 

0"0 0"2 0"/,, 0"6 0"8 I '0  

Fig. 4. Curves for (f0)l~a exp [-- 1 × (sin O/]Qg]/d a against  sin 0/)., 
together with the approximations, 3.4/d 2 and 2.7/d. 

of exp [ - 1  × (sin 0/2)~], and it  is apparent  tha t  3.41 d2 
is an excellent approximation to f /d  a for sin 0/2 < 0.5, 
while 2.7/d is a fairly good approximation, for the pur- 
poses of the integrations, in the range 0 < sin 0/2 < 1-1. 
Thus, to a good approximation for our purpose, we 
can put  

f oc d~' oc u-~', 1 ~ < # ~ < 2 .  

The calculations of ~F.S. have accordingly been 
repeated for the 2- and 3-dimensional cases with both 
# = 1 and # = 2, and the curves are shown in Fig. 5. 
I t  is seen tha t  the differences between the curves with 
/~ = 1 and/~ = 2 are small, and therefore a mean value 
of # = 1.5 has been used to derive the curves for ~F.S. 

1 "0" 

0"8 

0"6 
~F.$. 

0"4 

0"2 

0"0 

Fig. 5. Curves for ~F.S. against U for 2- and 3-dimensional 
unweighted syntheses, using the two approximations to 
f/d a shown in Fig. 4. 

against Uc and against the convergence ratio, ~; cf. 
Fig. 6(a) and (b). I t  is clear tha t  the fall of efficiency 
with increasing U is considerably more rapid than for 
~F.S. (or ~s.~.) with optimum weighting. Also, this fall 
is more rapid for a 3-dimensional summation than for 
a 2-dimensional one, confirming the belief tha t  the 
radii and rates of convergence of 3-dimensional Fourier 
syntheses are a little less than  those of 2-dimensional 
ones. Another noteworthy feature is tha t  the maximum 
value of Uc = 2zeAJdmin. is only about 0.6 for the un- 
weighted Fourier syntheses, as against 1.7 for the 
Fourier syntheses with optimum weighting. The 
smaller figure corresponds to 

Ac --- drain. × Uc/27I : 0"074 A ,  



452 THE EFFICIENCY OF CONVERGENCE IN STRUCTURE DETERMINATION. II 

1"0' 

0"8 

0"6 

~F.S. 
0-4- 

0-2" 

0"0 
0-0 

1.0 1 . i ~ / n  = 2 0-8 0-8 

0.6- I 0. = 3 

, t ,  , , \ \  
0"0 0-01 . . . .  

. . . .  0 :5  " 0"0 0:2 0:4 0:6 0:8' 1~0 1:2 1:4 0"0 0-2 0-4 0"6 + 1:0 

Fig. 6. Curves for ~/$'.S. (for unweighted syntheses) against (a) U, ---- ~F.z. × U ---- 2~ tAc /dmin . ,  (b) the convergence ratio, 
= (Z lc )2 / ( / l¢ )p  for two successive refinements, (c) the integral reliability index, RI ---- 2:IIFoI-IFdl +-rlF~l • 

for the limiting sphere of Cu K~ radiation. This is the 
maximum value of the r.m.s, refinement per coor- 
dinate to be expected in unweighted Fourier syntheses. 

Finally, graphs for ~F.s. against Rx have also been 
recalculated (Fig. 6(c)). These also approximate to the 
linear relation ~F.s. = 1-Rx/0 .828,  and, as discussed 
previously, they can be used advantageously when 
~F.S. < 0"6. However, when ~ <~ 0.5, fluctuations in 
are of the order of U (eft Appendix 3), and can there- 
fore produce large errors. A calculated value of 
Rx < 0.5 can be taken as an indication that  ~F.s. > 0.5, 
and in this case use can be made of the upper branch 
of the curves of Fig. 6(a). The above considerations 
provide some justification for the bias against working 
up approximate structures with R+ > 50 %. 

7 .  C o n c l u s i o n s  

The main results of the foregoing analysis are: 

1. Analytical expressions have been obtained for the 
mean value, ~.s. ,  of the efficiency of convergence of 
the method of Fourier synthesis. ~F.S. is ultimately 
expressed as a function of U = 2z~A/d,,~,., where A is 
the r.m.s, error per atomic coordinate. 

2. I t  is found (in agreement with the indications in 
Part  I) that  ~7-F.s.= ~s.v., where ~s.~. is the efficiency 
of the correspondingly weighted methods of steepest 
descents and least squares. However, two important 
features are that  (a) ~r.s. > ~s.D. always, but 
~F.s.-+ ~s.~. for both small and large U, and that  
(b) in the range of moderately large errors (corre- 
sponding to 0.2 < U < 0.6), ~F.s. is greater than ~s.v. 
by a factor of about 1.3. 

3. Since the r.m.s, correction, A~, per coordinate 
given by any refinement is different from the actual 
error, A, graphs are drawn for ~e.s. against U¢ = 
2gA¢/d,,~,., and also against the convergence ratio, 

= (A¢)~/(A~) 1, of two successive refinements. The 
graphs of ~F.s. against U¢ show a maximum value of 
U,, and are therefore double-valued; the @ curves can 
be used to overcome the consequent ambiguity. 

4. I t  is also shown that  for discriminating between 
the two branches of the U against U, curves, it is 

sometimes advantageous to use the practically linear 
graphs for ~ against RI, where Rz is the correspond- 
ingly weighted reliability factor, 

=~ W21IFo[ - IFj]  - =~ W~- [ F j ,  
hkl hkl 

calculated for the reflexions used in the Fourier syn- 
thesis. I t  is found that  ~ > ½ when Rx < 0.45, ap- 
proximately. 

5. As an incidental to these calculations, Rz is also 
graphed as a function of U for various values of the 
weighting function, W% These graphs should be useful 
for estimating the error, A (= dram.× U/2rt) from a 
single calculation of Rz (cf. Luzzati, 1952). 

6. For comparison with the results of Part  I on the 
methods of steepest descents and least squares, we 
have used the optimum value of the weighting func- 
tion, which is, in this case, W~f oc d r, v ,,~ n + 2  for 
n-dimensional summations. However, because Fourier 
syntheses are usually not weighted, all the calcula- 
tions have also been carried out for the case of W ~ = 
constant, for both two- and three-dimensional sum- 
mations. The ~ .s .  curves for these cases fall much 
more rapidly than for optimum weighting; the curves 
for ~F.S. against R z are an exception, the linear ap- 
proximation, ~ ~ 1-RI/0.828, being still valid. For 
unweighted syntheses, values of ~ < ½ (correspond- 
ing to R+ > 50 %) cannot be used with any confidence. 

7. I t  is perhaps pertinent to point out that,  in view 
of general considerations of 'contact' of atoms, and 
also the analysis for overlap of atoms in projection, 
etc. (Qurashi & Vand, 1953), the foregoing analysis 
is meaningful only if ~/3.zJ < ½ × (mean interatomic 
distance)_ 0.7-1.0 A, i.e. if A is less than about 0.5 JL 
With Cu Kc~ radiation, this gives Umax.-- ~ 4. I t  is seen 
from the graphs that, for values of U between 2 and 4, 
~F.s. for unweighted refinement is of the order of 0.1, 
whereas when optimum weighting is used, the corre- 
sponding values are of the order of 0.5; this very 
significant improvement in the initial stages of refine- 
ment should outweigh the increased labour of properly 
weighting the Fourier synthesis or other refinement 
technique used. 
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A P P E N D I X  1 

P r o b a b i l i t y  d i s t r i b u t i o n  of  ~Pct w h e n  fPo a n d  cPc 
a r e  ~, iven 

The dis t r ibut ion is bounded by  two conditions, viz. 

(¢2,=0 = ¢o, (¢~,),=~ = ¢~. 
However,  ¢o and  ¢¢ are m u t u a l l y  correlated, as can 

be seen by  calculat ing qo~c: 

qoq~ = (2 27 Nj  cos %) (2 27 N i cos (v ia-  Ovjo)) 
J ] 

= 2 27 N~ cos ~Vio = 2 27 N~(1-2  sin e ½OVjo) # O.  
J i 

To make  the conditions independent  and  symmet-  
rical, we replace them by  two l inear combinat ions of 
~o and  q~, pu t t ing  ½(Vio+Vi~ ) = Vim: 

~ = ½(~o-~c) = 227 Ni½ (cos % - c o s  vie,) 
i 

= - 2  27 N i sin Vim sin ½ ~vjo, 
J 

~o~ = ½(~o+~) = 2 27 Ni½ (cos v~o+cos v~) 
J 

= 2 2~ ~V i cos vim cos ½ ~Vio. 
J 

I t  is easily verified tha t  qo~m~oo~ = ¼(q~-q~) = 0, so 
t ha t  q~in and  ~oo~ are independent  boundary  values 
for the  dis t r ibut ion of q~t- If  we put  (½-t)(~v~o = Av# ,  
then  q~ct can be wr i t ten  as 

q~t = 2 27 N i cos via = 2 ~ Ni  cos (Vim+AVz) 
J J 

= - 2  27 N i sin vim s in /1v#+2  fl_~" N~ cos Vim COS/1Vjt 
j i 

= atqsin-t- btq~cos 

+2 ,2 :  N~[sin vim(a t sin ½(~vjo- sin A vit ) 
i 

+cos  vim (cos A v # - b  t cos ½(~vjo)] • (15) 

Because q~i= and ~o~ are not  correlated, we have  to 
ad jus t  a t and bt independent ly  so as to minimize  the 
r.m.s, value of the th i rd  te rm in the  above expression. 

Not ing tha t  sin vim cos vim = 0, the  condit ion for this  
becomes" 

sin 2 v;m sin ½(~Vio(a t sin ½(~Vio-sin Av;t) = 0 

= cos 2 vim cos ½(~vjo (cos A v i t - b  t cos ½6vjo ) , 

i.e. a t sin 9 ½(~vjo-- sin ½~vio sin Av# = 0 

= bt cos 2 ½(~Vjo-cos ½~Vio cos Av i t ,  

which is equivalent  to 

a t sin 2 ½~VSo = sin ½(~vso sin (½--t)~vio, 
bt cos 2 ½5vjo = cos ½6Vio cos (½-t)(Svio.  

Because the  dis t r ibut ion of ~Vjo is closely Gaussian 
(Part  I, Appendix  2), these expressions can be eval- 

ua ted  as follows (on pu t t ing  6vio = f ,  and I/(# 2) = u)" 

a f  f :  a f  exp [ -  2-~-9] d f / i  ~ [ - 2 - ~ ]  d f  cos = cos 0 exp 

so tha t  = exp [ -½agu  s] , 

at = sin ½f sin ( ½ - t ) f / s i n  s ½f 

= (cos f i t - c o s  ( 1 - t ) f ) / ( 1 - c o s  f )  

= (exp [-½u2t 23 - e x p  [-½u2(1-t)23) / 

( 1 - e x p  [ -½u2]) ,  (16a) 

bt = cos ½f cos ( ½ - t ) f / c o s  2 ½f 

= (cos f t + c o s  ( 1 - t ) f ) / ( 1  +cos  f )  

= (exp [-½u~t s] + e x p  [ - ½ u 2 ( 1 - t ) 2 ] ) /  
(1 + e x p  [ -½uS]) .  (165) 

I t  is readi ly  seen tha t  these values of at and b t 
give the mean  value of qa, so t ha t  the  complete ex- 
pression for qa can be wr i t ten  

qPct = at½(Cfo--q)c)+bt½(qPo+q)c)-Fct(cf2) ½ 

= bLcp o +½(at-bt)(epo-q~)+ct(cp2) ½ , (17) 

where the th i rd  te rm has a r andom distr ibution,  and  

c~t = (at sin ½ f - s i n  (½-t)#)S+(cos ( ½ - t ) # - b t  cos ½#)2. 

ct is a m a x i m u m  for t = ½, i.e. when the  s tructure 
(corresponding to qct) is exact ly  hal f -way between 
those corresponding to qo and  to qc. For  this  special 

case, a½ = 0, so t ha t  qc½ = b½.½(q~o+q~)-4-c½(cp2) ½, 
where 

b ½ = 2 exp [ -  uS/8] / (1 + exp [ -  uS/2]) ~ 1 + u9/8 

for smal l  u ,  

c½ = { 1 - 2  exp [ - u 2 / 4 ] / ( 1  + e x p  [ - u 2 / 2 ] ) } i ~  ~/2.u2/8 

for smal l  u .  

b½ and c½ are plot ted as funct ions of u in (Fig. 7a), 

1 "0' 

0.8- 
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0"4 

0-2 

0"0 
0 1 2 3 4 S 

Fig. 7. (a) Curves for b½ and c½ as functions of u = 2z,d/d. 
Note the initial rise of b½ to a maximum at u _~_ 1.5. 
(b) Typical probability distributions of ~vct for small and 

large u. 
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and two typical distributions of 9a are shown in 
Fig. 7(b), one for small u and the other for large u. 

I t  is interesting to note tha t  whereas c~ is a mono- 
tonic increasing function of u, b~ first increases 
(approximately as 1 +u~/8) for small u, and then (for 
large u) decreases as 2 exp [-u~/8]. Thus b~ attains 
a maximum value of 1.140 at u = (2 log 3)~ = 1.48; 
the initial increase is a consequence of the fact tha t  

cos ½(A +B) " : ½ (cos A+cos  B) ( I+(A-B)~ /8 ) ,  

while the exponential drop for large u is caused by the 
increasing randomness of the ~ and ~ distributions. 

Finally, we evaluate the first derivatives of a t and 
b t since these are required in minimizing the residual, 
R(t). We get 

_ da.__~ = {u~/ ( l_ex  p [_½u~]) } 
dt 

x {t exp [-½u~£]+(1-t )exp [-½u~(1-t)~]}, 
(18) 

dbt 
dt = {¢1  (1 +exp [-½u~])} 

x {texp [ -½u~£] - (1 - t ) exp  [ -  ½u~(1-t)2]}. 

A P P E N D I X  2 

Evaluation of ( ~  ~ o ~ e t / ~  1)0 = x( t )  
h k l  h k l  

We first obtain 

The probability distribution of q0 o is 

I 
exp [ -  9o~/(2a~)] dq~o, (2~)~ ff 

and, given ~o, the distribution of ~9 = ( 9 o - ~ )  is 

1 
(2~)~ay~. exp [-- (~--Yl 9~0)~/(2a~Y~)]d(~9), 

y~ = (1 - exp  [-½u~]), y~ = ( 1 - e x p  [-u~]) ½ , 

of. Par t  I, Fig. 7 and equation (8d). I t  follows, on 
putt ing 9o = Y and ~ = zx, and therefore ~, = (y-zx), 
that  

2 exp [-y~/(2a~)] 
2[(1) = (2~)½a(2~)½ay~ v=0 

x y (y - z l )  exp [-(zl-y~y)~/(2a~y~)]d~l 
z~=y 

(F S 1 exp [ -  y~/(2a~)] (y~-- y~y~) 

x exp [-(z')~/(2e~y~)]dz'dy 

F F - exp [-y~/(2a~)] yz' 
y=O z'=y(1--'F~) 

exp [-(z')~/(2~r~y~)]dz'dyl (z' = z l -yxy)  × 
/ 

1( 
- ~ta~y ~ (1-yx) y~ exp [-y~/(2a2)] 

y=O z"=VO-y~)/(2)½r..a 

x exp [(-z")9](2)½y2~dz"dy 

- r ~ ¢  v=oy exp [ -y~/ (2a~)- (1-  yx)~ y~[ (2a~y~)] 

(z" = z'/(2)~y~). 
Making use of the relations, 

= ~ / ( 1 - ~ ) ,  r~ = ~ / ( I+~D,  

and putt ing 

l - y 1  y 
Y (2)½y~a (2)½ya-  y '  

we get 

( l g(1) = YJ 4y~a ~ (y')~ exp [-y2y'~] 
y'=0 

x exp [-z"9]dz"dy ' - y exp [-y2/(2y~a2 
~" v=0 

_ Y 9  a 2  

[ { _ 2  exp[-Y~Y '~] ice oo Y~a~ y' ~ exp [-z"~]dz"]¢=o 

+ 2 exp [ - y~y'~] exp [ -z"9] dz" ' 
y'=0 y' 

- - -  { o +  ( ta~-I  ~ ' l / r -  1/(1 +r~-) -~ ,~} ,  

cf. derivation of equation (10a) in Par t  I. 
When the value of t is different from unity, we must  

replace 9c = (Y-Z1) in the above calculation by 

q~t = btgo + ½(at-bt) (q~o-qDc)4-ct(9~) ½ after equation (17) 

= btY+½(at-bt)Zlt=Cta. 

In  carrying out the very first integration with re- 
spect to z,, the effect of the term +ct~; disappears, 
and after further mmplifications (as for 2[(1)), we 
finally get 

-- 1 (tan/_-1 y 

0~2 
27t [at {y 2 ~,2 

-b t  {y~. y2 -1 

y2 + 1) 
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- + 7 -  
2 ~  7 / 

7 

= a if_ [atFa+btF~ ] (19a) 
2 ~  

where 

~ =  {(1-e~p [ - ~ ] ) ~ -  e~p [ - ~ / 2 ]  tan-~ (e~p [~]-- 1)~} 
+ {tan -~ (exp [u ~] - 1)½-exp [ - u  ~/2](1 - e x p  [-u~])½ ) 

=(1-exp[-u~/2]){ tan-~(exp[u~]- l )~ } 

+ ( 1 - e x p  [-u~])½), (195) 
/ ' b =  (1 + e x p  [ - -u~/2])  { t an  -1 (exp  [u~] - l )  ½ 

- ( 1 - e x p  I-u°/)½).  

A P P E N D I X  3 

In  the discussion of the curves for ~F.s. against 
U, ~, etc., we have ignored the influence of (1) statis- 
tical fluctuations in the averages used for calculating 
the residual, R(t), and (2) 'diffraction effects' due to 
neighbouring atoms, which can also be treated as 
series-termination errors. 

The first effect corresponds to tha t  discussed in 
Par t  I, Appendix 2(d), and can be represented by a 
fluctuation (A~) 1, where, for a 2-dimensional summa- 
tion with N terms, 

{(AV)~}~-~{3(1-V)/N}~-~l'45~0/U (7 < ½). 

An exact t rea tment  of the second effect is a little 
difficult, but  if we make use of the discussion (cf. 
Qurashi & Vand, 1953, § 3) for atoms overlapping in 
projection, and take (~ (--~ 1.5 J~) as the average dis- 
tance (in projection) of an atom from its six nearest 
neighbours, the uncertainty (A~)9 due to this cause 
can be estimated as* 

((A~I)~)½~-2C/U(~) = 2Cdmin./(2x~) = 2C(A/~)/U, 

where C _  ~ 1 for optimally weighted Fourier syntheses 
(W2.fo: d ~, v = n + l ,  or n + 2), and C_~2.5 for un- 
weighted syntheses. Thus the total  uncertainty,  A~, 
for a 2-dimensional synthesis is given by 

{(A~])~} ½ = ((A~)~ + (Av)~}½ ~ {(1.45uo/U) 9 
+ 4 c ~ ( ~ l @ l V ~ } ~  

= (1.45IU)(u~,+c~A2)~ (~ = 1.4 h) .  

How, we can take {(A~/)~} ½ ~< ~ as a limiting cri- 
terion for reliable convergence, because this gives 85 % 
probabili ty tha t  (~+A~) still has the sign of 7" Ap- 
plication of this criterion gives the following results: 

* I t  is well to note tha t  the effect will be proportionately 
greater if one or all of the neighbouring atoms are heavier than  
the a tom under  consideration. 

(a) v ---- n + 2  

~_(1.3-Uo)~(uo/V)~_K(uo/U) ½ (~ < 0.7,  g - ~  1),  

whence the limiting condition is 

K(uo/U)~ ~ (l'45/V)(u~+Ag) ½ 
= 1.45(uolV)(1 +(~luo)~) ~, 

whence 
(uo/V)~ < (K/1.45)/(1+(~/%)~)~, 

so tha t  
= K(uo/U)~ < (K3/1"45)½.(1 +(A/uo)9) -~. 

Since u 0 = (2z/d,,a~.)A ,.-,A with dma~."~ 8/~, we finally 
get 

< .Ka/2/(]/1"45 × ~/1.41)_ ~ ]/½Ka/2,~0.7, 

which is always satisfied when there are a large 
number of terms in the summation. I t  is interesting 
to note tha t  there is no lower limit to the useful values 
of ~ in this case, although of course u o is limited to 
being less than  uni ty  (approximately), which corre- 
sponds to A < 1 A, a needlessly generous limit. 

(b) v = n + l  
~_~0.55/u (~ < 0.3), 

whence for the limit, 

0.55/U >/(1.45/V)(u2o+A2) ½ 
~_ (1.45/V)(2uoA)½-_ 1.45(uo/U)(dmax./ze)½ , 

whence (A = uod,,ax./(2ze ) ,-~ Uo) , 

uo < (0"55/l'45)(7~/dmax.) ~, 
i.e. 

V ~_ (dma~./dmin.)u o < (0.55/1.45)(zedma..)½/dmm., 

so tha t  finally 

= 0.55/U ~ (1.45/Vze)dm,n./l/dma~.~__0"2 

for a cell side of the order of 8 A, and using all the 
reflexions observable with Cu K s  radiation. This shows 
tha t  all the region 0.2 < ~ < 1.0 gives good con- 
vergence. This lower limit for ~ quite natural ly de- 
creases as the number of reflexions used increases. 

(c) v = 1.5 (unweighted synthesis) 
We can anticipate from the above results tha t  the 

lower limit for ~ will be fairly high in this case. 
HOW, 

~ _  exp [ -0 .7U]  

(to within 20 % in the range 0" 1 < ~ < 1.0) 

and for this case C = 2.5, whence 

((zt~)~)~_~ (1.45/u) ~u0 ~ + (2.5A)2}~ 
= 1.45 ×2.5(A/U) {1 +(0.4Uo/A)2} ½, 

whence we get for the limit, 

>~ 3.62(A/U) {1 +(0.4Uo/A)~} ½, 
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i , e .  

3.62A{1 +(0.4Uo/A)~}½ < U × ~ = 0.5±0.1 

(0.15 < ~ < 0.75), 
whence 

V=2r~A/dm~. < (2~/g~n.)(0"5/3"62)/ 

{1+(0.4~0/A)~}½ _~ 0"8 /d~n,  
so that  

-- exp [ -0 .7U]  ~ exp [-0"56/d~n.]_~0"5, 

for the reflections within the limiting sphere of CuKc~ 
radiation. Now, this limit on ~ corresponds to 
Rz < 45%, and provides some justification for the 
usual bias against attempting the refinement of an 
approximation with a reliability index greater than 
50%. This is to be contrasted with the properly 
weighted syntheses, for which the useful upper limit 
of R~ is considerably higher. Similarly the upper limit 
of u 0 (and A) increases progressively as we go from 
case (c) to case (a) above. 

Finally, we must note that  the value of the fluc- 
tuation At / i s  not the same for all three coordinates 
of any one atom. This follows from the fact that  only 
corresponding coordinates of neighbouring (or over- 

lapping) atoms are involved in the equations for the 
separate shifts (cf. Qurashi & Vand, 1953, equation 
(9)). However, it appears that  the fluctuation (zJ~) 1 
is the same for all three coordinates. Thus we get 

vx = ~+(AV)I+(AV)%~, 
~Tv = ~+(AVh+(AV)~,v ,  
V~ = ~+(zlV)I+(AV)~,~. 

Since (~x)~c. -- ~x((~X)obs., etc., it is readily seen that  
when {(A~)~}½ is comparable with ~, the calculated 
vector shifts can differ very considerably in direction 

from the actual shifts required. Since (A~)~ ~ (A~)~, 
this effect is small within the limits of useful ~ cal- 

culated earlier, because ((A~])~}½ < ~]~/2. 

References 

Cocm~a_~, W. (1948). Acta Oryst. 1, 138. 
Cocm~A_~, W. (1951). Acta Cryst. 4, 408. 
LvzzATI, V. (1952). Acta Cryst. 5, 802. 
Qty~SHI, .~. M. (1953). Acta Cryst. 6, 577. 
QU~ASHI, M. 1~[. & V~D,  V. (1953). Acta Cryst. 6, 341. 
W~so~, A. J. C. (1949). Actor Cryst. 2, 318. 

Acta Cryst. (1955). 8, 456 

Calcu la t ion  of G e o m e t r i c a l  S t r u c t u r e  F a c t o r s  for S p a c e  G r o u p s  
of L o w  S y m m e t r y .  II 

BY E. W. I~ADOSLOVICH 

Crystallographic Laboratory, Cctvendish Laboratory, Cambridge, England 

(Received 6 December 1954 and in revised form 14 February 1955) 

This instrument (called SUMCOS) assists in the calculation of .~ cos (hxi+ky~+lzi) by hand. 

It  does this by forming cos (hx] + ky i + lzi) separately for ten atoms, and simultaneously presenting 
the vahms of these ten cosines ready for addition for any given (h, k, l). The final addition must be 
done by hand. 

The values of cos (hxj+kyi+lzi) are derived from a table of cos hx 1 by using a simple mechanical 
arrangement to shift the origin of this table by (kyi+lzi). The values are presented for addition by 
switching on a small light behind the particular value of cos hxj on the table, which is written on 
translucent material. New values of cos (hxj+kyj+lzi) are presented for successive h simply by 
turning to the next position of a 24-position switch. 

1. Introduction 

Part  I of this paper (Radoslovich & Megaw, 1955) 
described a device for moving the origin of a table of 
cosines by any arbitrary amount (ky+lz) in order to 
read cos (hx+ky+lz) from a table of cos hx. I t  con- 
sisted of a box carrying a fixed scale and two tables 
on a movable chart, so that  shifts of origin could be 
made easily and rapidly. The usefulness of this box in 
calculations for triclinic and monoclinic space groups 
was pointed out. 

Such a box speeds up calculations dealing with one 
atom at a time. In most calculations, however, we are 
concerned with several chemically identical but crys- 
tallographically distinct atoms, and we are therefore 
interested in the quantity 

2V 
~v cos (hxi+ kyi+lzi) , 

~---0 

where the summation is over N chemically similar 
atoms. This could be computed rapidly if the values of 


