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An Analysis of the Efficiency of Convergence of Different Methods of Structure
Determination. II. The Method of Fourier Synthesis: Centrosymmetric Case
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A discussion of the rate and ‘efficiency’ of convergence of the method of Fourier synthesis is
presented for the case of large departures of the assumed approximation from the correct structure.
The Fourier synthesis is first reduced to its exactly equivalent minimum-residual solution, with
inclusion of the effect of incorrect signs of the structure factors. A mathematical expression is then
obtained for the efficiency of convergence, 7 g, (= calculated correction/actual correction re-
quired), for an n-dimensional summation. 7p s, is finally expressed as a function of U = 2z4/dnin.,
where A is the r.m.s. error per atomic coordinate. (In the process, graphs are obtained for the
integral reliability index, Ry = ZW?¥|F,|—|F,|| - ZW?F,, as a function of U for both weighted
and unweighted Fourier syntheses; these graphs are practically identical for 1-, 2- and 3-dimen-
sional summations, and should be useful for estimating 4 directly from R;.) The behaviour of 9p g
under various conditions is discussed, and is found to be similar to 7g p. for the methods of steepest
descents and least squares. Curves are given for 7nr s against U, against U, = np s x U, and
against Ry, all of which are useful under different conditions for (a) estimating 7z s and (b)
speeding up the convergence by dividing the calculated corrections by 7p s. The influence of
neighbouring atoms and of statistical fluctuations on the reliability of the calculated value of 5y g,

is discussed analytically.

1. Introduction

In Part I of this series (Qurashi, 1953), the desirability
of evaluating the rates of convergence of various
methods of structure determination was considered,

and ‘efficiency of convergence’ (for one application)

of any given method for a parameter, u;, was defined
as

n(u;) = ouj/ouy, , (Part I, equation 1(a))
where du;, is the actual correction required and du;
is the correction obtained from one refinement.

An expression was then obtained for the efficiency,
7s.p., applicable to the methods of modified steepest-
descents and to the linear approximation to the
method of least squares. It was shown (cf. Part I,
equations (6) and Fig. 5) that

where N5.0.(%;) = Nrp(E) X N7,8(2:) 5

771«"(%‘) = (2 (1_2ﬂhkl) szizhz)/(z sz?hz) s
rEl hkl

and n74(x;) is a slowly varying function of A, k,1,
of value between 1 and £ in the practical case. W2 is
the weighting function and S, is the fraction of the
F’s that are given wrong signs by the assumed ap-
proximation to the structure. Both 7y and 7y, 5 were
ultimately expressed in terms of U = 274 /du,., where
A is the r.m.s. error per coordinate, and dy;, is the
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minimum interplanar spacing for the reflecting planes
used in the summation. Since the variation of the
atomic scattering-factor, f, with sin /4 (i.e. with
h, k, 1) is very similar for all the effective atoms in a
structure, 7 becomes practically identical for all the
parameters. It was also remarked (Part I, § 3, discus-
sion of equation (6); and § 8, result (6)) that, although,
for small values of U, ny approximates to the effi-
ciency of convergence, 7y, of the method of Fourier
synthesis, the value of 7y g for large U is not directly
deducible from that of 7. The reason is that both
processes of refinement are essentially discontinuous,
with the discontinuities occurring at different values
of A (because of the factor 7 ;) so that the two
methods correct the phases of the F’s at different
stages.

We shall now establish the precise relationship be-
tween the two methods, and convert the Fourier
synthesis into a minimum residual problem whence an
expression for 7y g will be derived. The contractions
used in Part I of this paper are used here also.

2. The Fourier synthesis as a particular case of
the minimum residual solution

For the special case when the F,’s are completely
known (i.e. both in magnitude and phase), Cochran
(1948) has shown that the Fourier synthesis,
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1 S, T Yy .2
0@ ,2) = 5 3 Fsexp| 2 (4 5445-41%) |, (1)

(corrected for series termination, ete.) yields exactly
the same coordinates for the jth atom as are got by
minimizing

B= 3> (F )

et Jj

Since the phases of the F,’s are assumed to be known,
this equivalence can apply only to the ultimate results
of the refining process. What happens in practice is
that a certain approximation to the structure is as-
sumed or is otherwise known, the structure factors, F,,
are calculated for this approximation, and a Fourier
synthesis is performed using coefficients whose mag-
nitudes are those of F, and whose phases are those of
F,. Thus F, in the synthesis (la) is to be replaced by
F,., where

lFocl = lFols

(10)

and arg F,,=argF,, (2a)
and the first application of the Fourier method gives
the following (real) electron-density distribution:

00c{®, ¥, 2) = L 2 F, exp [~2m’ (k§+kg+l§>]
Vi b

= —ZF,,C exp [ -] . (2b)

The refined coordinates of th,e jth atom Wﬂl be given

by the corresponding peak in this Qoc synthes1s i.e. by
those values of %o, Yjoc, z,,,c, whlch satisfy

op B
0= =———2F 27z 7'eX -—w
(ax)xlac Yjocs Zjoc |4 kil o P[ MC]

with similar equations for dg,./dy and 0g,./0z.
Now, consider a set of atomic coordinates, (zy, ¥
2;4), where the subscript ‘¢’ is added to distinguish
these variable coordinates from the other sets. If we
calculate F, from the formula

Fct Zf} eXp [lv}ct] )

and then perform a Fourier synthesis with these F’s,
namely

1 0
Q(‘t(x: Y, Z) = —I_jth;le €xXp [—“)] ’

it is clear that the electron-density peaks will occur
at the points (Tju, ¥ 2ju), €bc.,* i.e. we have

0= (_ag_“

) 1
a.’L‘ Zjcts Yjebs Zjct

= > Fc,27zh1, exp [—iv], (4)
Vi

* Provided that the series are suitably corrected for series-
termination effects by one of the usual methods. If difference
syntheses are used, this error is of course largely corrected for.
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etc. From equations (3) and (4), after putting «; i =jocs
ete., we get for the x coordinate of the jth atom in the

fzrst Fourier refinement,

~[ZF-Fa2aliesn (—ivd]
24 a

Zjct="=Zjoc etc.

—10F%
2 Fog F ct]
[ ( ) f] axyct Zjct="2Zjoc, etc.
0 1
=1 Foc .2 s 5
[axm hkl f,] a Tjg=Zjoc, ete. ®)

and similar equations for y;. and 2z, Thus, the
coordinates of the jth atom obtained from the first
Fourier synthesis can be got by minimizing

R, =3~
e S
where the F,’s are fixed at the start and the F,’s
will be varied during the minimizing procedure The
values of 2y, Y4, 2, that make E; a minimum have
now to be found when this has been done, the effi-

IFoc Fc:l s (6)

-ciency #p.¢.(z;) will be given by

axjc _ x/c_[xja for minimum R
633]',, xjc_xjo

Nr.slz;) =

It must be stressed here that the general minimum-
residual (or least-squares) solution as in (6) is to be
distinguished from the linear approximation to the
least-squares, in which it is assumed that the deriva-
tives, 0F[0z;,, etc., are linear functions of the para-
meters, and which is therefore suited to actual cal-
culation. In numerical work, it is usual to designate
this approximation as ‘the method of least squares’;
as such this method has been discussed in detail in
Part I of this paper. It is also pertinent to remark that
the approximate gradient formula,

Az;=—(0D|0z;);/C(g.);> (Cochran, 1951, equation (2-7))

used to calculate the shifts from a difference electron-
density map is exactly equivalent to this linear approx-
imation (Cochran, 1951, remark after equation (2-7));
therefore, the efficiency of convergence for this for-
mula is also exactly as in Part I.

3. The simplified minimizing procedure

We shall here deal with the case of a centrosymmetric
structure or projection, and, for comparison with the
results of Part I, we shall treat the general case of the
weighted Fourier synthesis (cf. Cochran, 1948) in
which each F is multiplied by a positive factor, W2,
which is a function* of A, &, I. In this case, equation
(6) becomes

* When W2 is a smooth monotonic function of dp, its
introduction is similar to that of an artificial temperature
factor, and does not require Cochran’s iterative process.
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2
R 2 (Foc Fct)2 ((Fo—Fct)+(Fac_Fo))2
hkl f] '
(F —Fy)?+ Z (Fic —F3+2Fy(F,—F,))
hkl fy hkl f}
(F Fct) +Z"—2F (Fo_Foc) ’ (6a)
hkl f, hil f;

since, in the centric case, F, = +F, Clearly the
second term is identically zero for all reflexions that
have arg F, = arg F,; however, for the reflexions that
have the signs of ¥, and F, opposite,

(Fo_Foc) = Fa—(_Fa) = 2Fo:

so that if 2" denotes a summation over all such
Rkl

reflexions only, we can write

R F,—F, 4
hzsz,( oS+ 2a

The important point to be noted about the sum-

F o e (60)

mation 2/,' is that the indices of the reflexions in-
ki

cluded in it are fixed at the outset, and are not to be
varied during the minimization of R; The general
procedure for the minimization is to evaluate R; as a
function of all the atomic coordinates, z;, ¥;, zz, ete.,
describing the approach of the structure to its correct
configuration, then to put

and to solve for =, y;, 2;, accepting only such solutions
as make the second derivatives positive; these will be
the coordinates of the jth atom for minimum R;. The
procedure is then to be repeated for all j.

We can, however, effect a great simplification by
noting certain features common to 7pg and 7p
(the latter corresponding to the linear least-squares

method). First, if f = (371)/(27»: 1) , then f;/f does
i=1 i=1

not vary rapidly over the useful range of sin /4 and
we can therefore replace f; by f in equation (6b),
which makes it possible to put down a single set of
equations 0R[ox; = 0, etc., for simultaneous solution.
Further, as pointed out in the introduction, when f;
has been replaced by f, 7y is identical for all the para-
meters, so that we can expect the same behaviour for
7r.s. In any case, if we take #p g as being identical
for all the parameters, and then minimize R, we shall
finally obtain the value of 7y representing #r g
averaged over all the variable coordinates, and this
value will represent the individual values of 7, g to
a high accuracy.* This assumption implies that, in our
analysis, we only need to consider the case when all
the errors, dx;, dy;, 02;, ete., decrease in the same ratio,

* The effect of departures of 5 s, from the average value,
7F.8., is analysed in Appendix 3.
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so that, for the purpose of minimizing R in equations
(6), the 3n variables, x;, y;, 2;, can be replaced by one
independent variable, which may be a suitable func-
tion of these z;’s, etc. For, considering the reflexions
in a small range of Bragg angles, we know from Part I,
equation (11), that a good parameter is

w = V(@) = 2 )/ (5 0+ oy 0w+ s o)
= 2nd|dy, ,

where A is the r.m.s. error (in A) per coordinate. For
our present analysis it is more convenient to use the
parameter

t=A4/4,, (6¢c)

where 4, is the initial value of A. Clearly ‘¢’ is a linear
function of 4, and ranges from ¢ = 1 for the assumed
approximation (i.e. F,=F,) to ¢t = 0 for the correct
structure (i.e. F,=F,). Also, by comparison with
the definition of #pg, if £, is the value of ‘¢’ for the
minimum of R, then

Mrs. = 1=ty (6d)

4. Location of minimum of R

Rewntmg equation (6b) with f in place of f;, and writ-
ing B = R(t) to show its dependence on ‘t’, we get

R(t) = 2— (1",,—1"0,)2+Z4c-pIi F,F,
hkl f f
= 2W2f +2: W fo.0q (@ = F|f)

= WS [(@pli+ 4 E 0o/ 1], (7)
hil hkl hkl

where the summations within the square brackets are
carried out in a small range of %, k, I, (or of Bragg
angles, 0+d0/2, since the averages are ultimately
functions of dy, only). To evaluate the quantities in
the square brackets, we need to know three different
distributions:

(1) for ¢,
(2) for ¢* when ¢, is known, and
(3) for ¢, when ¢, and ¢, (= (py),—;) are both

known.

The first is the simple Gaussian distribution given
by Wilson (1949), the second has been given by Luzzati
(1952) and also in Part I of this paper (Qurashi, 1953),

and the third is derived in Appendix I. (g,—¢,)? is
easily obtained as

(Po—@als = (22 N, (cos Vjp—CO8 Uja))2 (Nj = fj/f)
=4 Z] 4N? cos? § (vj,+vj,) sin2 § v,
’ (80), = (0j0—0ja) = t0,)
= 4 sin® §0v; I 2N} = o?.4 sin? it dvj,,
i

(02 = ¢7=§2N$>
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whence, using a Gaussian distribution (Part I, Ap-
pendix 2) for dv,, we get

(Po—@a)i = 20%(1 —exp [—§u?t]) , ®)
where u = [/((0v;,)%) = 2nd/d .

The second term in equation (7) requires some in-
volved integrations for its evaluation, and the process
is therefore outlined in Appendix 2. It turns out that

(2 (Po‘Pct/Z 1)g=— atr +b6,1%) , 9)
where e
Iy, = (1—exp [—%?/2])

x {tan=? (exp [u®]—1)}+(1— exp [—u?])}},
_exp [—*u?[2] — exp [~ (1 —¢)?u?/2]

T— exp [—2f2] ’

I, = (1+ exp [—u2)

x {tan~? (exp [u?]—1)}—(1— exp [—u?])}},
exp [—t2u?/2]+ exp [ (1 —1)?u?/2]

1+ exp [—u?/2]

3

b‘=

Substitution of (8) and (9) in (7) finally gives

1
R(t) = 2 2W2fo* (1 —exp [~ 4u*?]) + — (@ o +b. 1)) -
e (10)
If we put ¢ = 1 and divide by

P ipp = sweper,
I Akl

this expression can be used to give the reliability index,

we
R’y = F,|—|F,)? 2,‘ F2,
(B') uf(lllcl) flcl
as a function of . The dependence of R’ on %, when
the summation extends over an infinitesimal range of

Bragg angles, is
= V[1 - exp[~u3j2]— > {(1-exp [~u?])}

—exp [—u?(2] tan~ (exp [«?]—1)1}] .

This is shown by the broken line in Fig. 1 and is to
be compared with Luzzati’s (1952) curves* for

* Luzzati’s calculations give different curves for 1, 2 and
3-dimensional summations. However, when we evaluate |Ar(2
for an n-dimensional summation, it turns out that Luzzati’s
o? is related to it by

= |dr]} = §|A"'|2 HATIS s

so that his o2 is identical with the r.m.s. error per coordinate,
designated by ‘4’ in our analysis. It follows that Luzzati’s
D = exp [—2n?|S|?0?] becomes

D = oxp [—34n?A%/d?] = exp [—3u?] (|S| = 1/dun)
in our notation, and a single curve in terms of ‘4’ is obtained
for 1, 2 and 3-dimensional summations.
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n=3
o= === 1Ry '[}w?=1

v=n+1
J }W2f=dl

0-0

0 2 L6 8

Fig. 1. Curves for the reliability index,
Ro = (|| Fol —|Fcl| | Fel)o »
against v = 2nA/d, and for the integral reliability index,
Ry = ZW2||Fo|—|F¢||+ ZW?|F¢| against U = 274 |dmin.. The
broken line is for Ry = V/((|Fo|— |Fcl)2 <+ |Fe|?)e.

Ry = (IF—|F.J[+[Fd)s,

cf. full line. It is noteworthy that Ry~ R, for all u;
an effect dJrectly attributable to the reversal of signs of
some F’s, since Ry = (%n)*Re when all these signs
are correct. For comparison with experimental values
of the reliability index, it is desirable to calculate
the ‘integral value’ of R over the full range of reflec-
tions, viz.

[Rl]n =
U 14
=\ wrrRwra / S W fur—du
’ " (Uftte ™ e [din.)

for n dimensions. Curves for R, for different values of
W? are also drawn in Fig. 1. (R is used here in place
of R’ because it is more usual to calculate X'||F,|—[F|,
etc., instead of the squares. Also, the values of R; are
not very sensitive to variation in %, and therefore
U/u, has been fixed as 10.)

Differentiation of equation (10) with respect to ¢’
gives the equation for the value (f,) of ‘¢’ at the
minimum of R(f), viz.

ZW||Fo|—|Fol|+ ZW|F|

0 =2 W2fo? (2tmu2 exp [—12u?/2]
Akl
2 da, db,
+a(r (@), (@)
z tn 2 W2fu? exp [~t3u?/2]
2 "

=2W2f( AT, (d“') Y (‘fl_";)m) (11a)

hkl

whence

(1—exp[—u*])¥}
x {t exp [—#*u?/2]+ (1) exp [— (1 —1)2u?/2]},,
+ {tan~! (exp [u%]—1)}—(1—exp [—u2])}}
x {t exp [—#*u*/2]— (1 1) exp [— (1—2)*u?/2]},,]
= 3 W2fu{t exp [ —t?u?/2] tan~1 (exp [u?]—1)}
h”—i— (1—t)exp [—(1—1)2u?/2] (1 —exp [—u2])}},,, (11b)

= WY [{tant exp )1+
Rkl
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after substitution for I',, (da,/dt), etc., and simplifica-
tion.

The equation can be solved numerically if the value
of W?f is known. Since it was found in preceding
analyses (Qurashi, 1953; Qurashi & Vand, 1953) that
the form,

W2f2 = d* with v~n+2,
is the most suitable* weighting function for the least-
squares refinement of an n-dimensional summation,
we shall use a corresponding form (cf. the factor 1/f in

equation (6)) for the present analysis, viz.

Wef =d' cu™ with y~n+2;

and shall work with two values of v, viz. v = n+2,
and v = n+1, for comparison with the corresponding
cases of the refinement by least squares. Also, we shall
use the symbol %%% to denote the value of 7y g for
an n-dimensional Fourier synthesis with W2f = d”.
We need only consider the one-dimensional case, since
it can be shown that the expression for 7y is the
same for a given value of (v—n); cf. Part I, § 5(b),
where it is proved that

3y 2 v—1__ 1,v—2
N =N =1nF "

5. Evaluation of 7p s,

On replacing the summations by integrations, which
is always valid since A/a < 0-1, i.e. the r.m.s. error
per coordinate is less than 1/10th of the cell dimension
(cf. Part I, § 5), we obtain (in one dimension),

P
) b S w" exp [—t2u?/2]du

(10 tra) €Xp [—(1—£,,)*u?/2] (1 —exp [~u?]) },

where the limits of integration are clearly related to
the minimum and maximum indices, 4, and H, of the
summations as follows:

D = u/Ux~(hy—3)/H=

u?*duft,, exp [—t3u?/2] tan~! (exp [u?]—1)}

(12a)

dmi.n. / dmax. .

For small U, the integrands can be expanded in
power series to give
) du

U 2
] 2—v tm 4—v
§th (u B wrt..
U
v t 1
2—y 3 (. m
=\ u Ipq—u? | >+~ +...
o [l () -}
0
* It is to be noted that, for v = 2n4/d < 1-0, the error,
|| Fo| — |Fe|| =|Fe|, varies as 1/d, and the summands in equa-
tion (11) are of the form W2fxwu? and W2fXxu®, so that the
effects of high- and low-angle reflexions are best equalized

by using a power law for W?f rather than the exponential
form, exp [— K (sin 6]4)2].

449

(1-t,)? 1
+(1—tm){u-u“( ) +Z)+"}]du
Ur . (=t +8, 1
_ 3—y__ J\- T m) Tom 5—v
SR SR
whence
U23—vy
2
(¢ )<1 t"‘2 5t )
-
w3 'du
- Ew_{l_g:__”v2(1+¢2)+...}, (120)

u?du

so that
77”’ = 77 = 1_(tm)v=2

U

= 1— ;z_ (1+D) {1 -5 U (1+ D)+ },

Cupr_ 13 (13)
NFs. " = MNFs. = (tm)v=3

U2(1 . .

~mlog D {1—1gU (1+D*+...}.

These results are seen to be very close to the
corresponding equations (13) in Part I of this paper,
thus confirming the idea that #pg~#ps. For very
large U, when # — 0 (i.e. ¢, — 1), it is desirable to
transpose the first term on the right-hand side of
equation 12(a). This gives

U
tm S u?" exp [ —12,u2/2] {g— tan—! (exp [u?]— 1)*} du

" st rexpl— (1—t,)u2j2)(1 —exp[~ut])idu,

Uy

- (1-ta)|

whence it follows that (1—¢,) > O, since £,, and the
integrands on both sides are always positive. We can
solve the above integral equation for large U (actually,

> 1) by expanding some of the functions in powers

of exp [—u?], viz.
WU
t S w? " exp [ -2 u?/2]
" x{exp [—u2/2]j(1—exp [—u2])}.

=(1-ty) RU w7 exp [ —(1—tn)*u?/2]
o x{1—% exp [~u?]+...}du,

.. }du

whence

U
nE5/(1=7F%) = ES u*™exp [—(1— niv’fq)uzldu/

Uy

SU 2 exp [ (1h4)%u2/2) du .
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For » = 2, 3, this gives, for ®U = u, > 1,

732 ~3® exp [-D2U2][(P2U?) ,
(14)

1
L3 N - —2rr2 2772
THE = gy 1 OB [~ PV (B 07)

1404
0-8
0-61

n
04

0-2

0:0

' 4 6 8
1401
08
06

7
04

0-2

0-0

0 2 4 6 8

Fig. 2. Curves for 7jr.s, 7s.p. and 7nr (broken line) against
U = 274 [dmin, for optimum weighting, viz. (@) W3f=dr+1,
(b) W2 = dn+2, for an n-dimensional Fourier synthesis.

The corresponding results for 75 are again similar,
viz.

bt & exp [~ 42U (B20)
and 7 9
Py —3®202]/(D2UY) ,
nr —nlog1/¢exp[ % ]/( )

whence it is seen that for large U, 7jps < 7y with
corresponding weighting. For intermediate values of
U, the integral equation can be solved by numerical
methods.

The solution is most conveniently carried out by

10+ 1+01
0-81 08
0% 0+6-
M. 5‘0.4. 04]
02 02
0-0 — 0-0
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fixing the values of £, and of @ = %,/U, and then
tabulating the integrals on either side of equation
(12a) for a series of values of U; from these tabulated
values it is a simple matter to find the particular value
of U which fits the equation, i.e. makes the two sides
equal.* This has been done for both » = 2 and ¥ = 3,
using a value of @ = 1/10, and the results are shown
graphically in Fig. 2, together with the corresponding
curves for 7y and 75, = npXx7rs The variation
of the curves with @ is small, cf. Part I, Fig. 1; there-
fore only one value of @ has been used.

6. Discussion of results and applications

It is evident from the figure that curves for 7
follow the corresponding ones for np closely, the two
being practically coincident for > 2. Also interesting
is the fact that for very large U, 7ps < 7, while
for moderately large U, 7755 > nr. However, when
the comparison is made with 7g, (which is the
quantity of practical interest), it is seen that
Nr.s. > Ns.p. for all values of U, and the two approach
each other for very small and very large values of U;
in the range of moderately large U (corresponding to
06 <7< 02), npg is greater than 75, by about
25-409%, which difference can be of considerable ad-
vantage in the convergence of a rather poor approxi-
mation to the correct structure. Apart from this
feature, the curves are so similar that the discussion
of the corresponding curves in Part I (§§ 5, 6, 7) will
apply here also. Curves for 75 5 against U, are shown
in Fig. 3(a), where

U,=nps.xU = 4273(41 XNp.5.)]Amin, = 274 [ dmin.

4, being the r.m.s. correction per coordinate given by
the one refinement. As before, the curves give two
values of % for each value of U, or 4., the lower value
being for an approximation far removed from the
correct structure. To determine which value of 7 is

* It turns out that for %, < 3, there are two solutions for
each value of ;. One solution is that given by the approxima-
tion (12b), while the other occurs at U > 20. The latter
solution is, however, ruled out because it gives a maximum
value of R (i.e. the second derivative 92R/0:? is negative).

1-0
0-8

06

0-0 05 1:0 15

00 02 04 06 08 10 12

0-0
00 02 04 06 T 10

Fig. 3. Curves for 7jps, (for an optimally weighted synthesis) against (a) U. = 7jr.s. X U = 2ndc/dp,, (b) the convergence
ratio, @ = (dc)g/(de)y, for two successive refinements, (c) the integral reliability index, Ry = ZW2||Fo|—|Fc||+-ZW?|F|;

the broken line is 77 = 1—R/0-828.
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to be used, we can make use of the convergence ratio,
2 = (4.)s/(4.)y, for two successive refinements, labelled
(1) and (2). Curves for 7y against p are shown in
Fig. 3(b). The region, g < 1, corresponds to the upper
branch of the curves of Fig. 3(a), and in this region,
the precise value of 75 to be used can be read off
accurately from the curves. For g Z 1, (corresponding
to the lower branch in Fig. 3(a)), a precise determina-
tion is difficult because of the rapid variation of #p g
with ¢ and the somewhat large error inherent in the
estimation of p. However, we have 774 < % in this
region, so that we can safely multiply all the cal-
culated corrections by 2, or even a little more, as in
the case of the corresponding curves for 74 p, in Part I.

In the region of small #, the following device can be
used advantageously to determine an accurate value
of 7. A comparison of the graphs of Fig. 2 with the
corresponding curves for the reliability factor, E;, in
Fig. 1, shows that the variation of » with U is very
similar to that of (1—R;/0-828); so that we can expect
a one-to-one relationship between 7 and R; The
graphs for 7y ¢ against R; for the cases of » = n+2
and ¥ = n+1 are shown in Fig. 3(c), and it is notable
that the straight line, 7z ~1—R;/0-828, is a good
approximation, particularly for the optimum index,
v = n+2. Thus, if R; is calculated for the reflexions
used in the Fourier synthesis, the appropriate value of
7r.g. can be read off from Fig. 3(c). However, it must
be remembered that the value of R, calculated from
the observed data is always greater than the theoretical
value, owing to the effect of observational errors, etc.,
which may be of the order of 0-15 or so. Thus the curves
of Fig. 3(c) can be used with satisfactory precision
only for R;~0-3 or more, i.e. for 5 < 0-6. When
R; < 0-4, it is definite that # > 0-45, and therefore
the upper branch of the curves of Fig. 3(a) can be
used.* In Appendix 3 we consider the effect of over-
lapping atoms and of statistical fluctuations (in the
averages in equation (7)) on the smallest useful value
of #. For properly weighted syntheses, this limit is of
the order of 0-2 or less.

Finally, we must note that the above curves for
7r.s. have been calculated for optimum weighted
Fourier syntheses with W2f «c d” and » ~n+2 for an
n-dimensional summation. It is usual, however, to
work with unweighted syntheses, i.e. to put W2 =
constant. For this case, we must clearly replace
u~" oc d” by ‘f’ in the integrals of equation (12a). We
consider only the case of 2- and 3-dimensional sum-
mations. For a 2-dimensional summation, the index
of ‘4’ in equation (12a) is to be increased by unity
(because the summations over & and k are replaced
by the integration in polar coordinates, cf. § 5, Part I);
so that the integrands involved are of the type

wdxf = 2rA|d)3xf < fld3.

* QGraphs for 7g.p. against Ry can be used similarly in
conjunction with the curves for 7g p, against U; in Fig. 3,
Part I. These graphs are very like those in Fig. 3(c) here.
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Now, Fig. 4 shows the curve for f/d® against sin /4
(= 1/2d) for a sodium atom with a temperature factor

4 /4
. i

7 '(2-7/ d
24

0 e,
00 02 04 06 08 10

Fig. 4. Curves for (f,)na exp [— 1 X (sin 6/2)?]/d® against sin 0/4,
together with the approximations, 3-4/d? and 2-7/d.

of exp [—1x(sin 8/4)?], and it is apparent that 3-4/d?
is an excellent approximation to f/d? for sin 6/4 < 0-5,
while 2-7/d is a fairly good approximation, for the pur-
poses of the integrations, in the range 0 < sinf/1 < 1-1.
Thus, to a good approximation for our purpose, we
can put

focdtcu® I1<u<2.

The calculations of #yg have accordingly been
repeated for the 2- and 3-dimensional cases with both
# = 1and u = 2, and the curves are shown in Fig. 5.
It is seen that the differences between the curves with
# =1and u = 2 are small, and therefore a mean value
of 4 = 1-5 has been used to derive the curves for 7 ¢

1 .0.

0-0

Fig. 5. Curves for 7jr.s. against U for 2- and 3-dimensional
unweighted syntheses, using the two approximations to
fld® shown in Fig. 4.

against U, and against the convergence ratio, g; cf.
Fig. 6(a) and (b). It is clear that the fall of efficiency
with increasing U is considerably more rapid than for
7p.g. (OF 7]5.p.) With optimum weighting. Also, this fall
is more rapid for a 3-dimensional summation than for
a 2-dimensional one, confirming the belief that the
radii and rates of convergence of 3-dimensional Fourier
syntheses are a little less than those of 2-dimensional
ones. Another noteworthy feature is that the maximum
value of U, = 2rA,/dpni. is only about 0-6 for the un-
weighted Fourier syntheses, as against 1-7 for the
Fourier syntheses with optimum weighting. The
smaller figure corresponds to

A, = dpinx U270 = 0074 &,
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1:07

107 1*0}
0-8 0-8
06 0-61 !
Tr.s. s |
0-44 04 I
0-21 0-2 I
0-0 . 0-0 :
0-0 05 00 02 04 06 08 5 12 14

0-0 .
00 02 04 06 1 10

Fig. 6. Curves for 7.9, (for unweighted syntheses) against (a) Us; = 7jr.9.X U = 27dc/dy, (b) the convergence ratio,
2 = (dc)p/(de),, for two successive refinements, (c) the integral reliability index, Ry = Z||Fo|—|Fe|| +Z|F¢| .

for the limiting sphere of Cu K« radiation. This is the
maximum value of the r.m.s. refinement per coor-
dinate to be expected in unweighted Fourier syntheses.

Finally, graphs for 75 against R; have also been
recalculated (Fig. 6(c)). These also approximate to the
linear relation 77g = 1—R,;/0-828, and, as discussed
previously, they can be used advantageously when
7r.s. < 0-6. However, when # < 0-5, fluctuations in %
are of the order of # (cf. Appendix 3), and can there-
fore produce large errors. A calculated value of
R;< 0-5 can be taken as an indication that 7 ¢ > 0-5,
and in this case use can be made of the upper branch
of the curves of Fig. 6(a¢). The above considerations
provide some justification for the bias against working
up approximate structures with R, > 509%,.

7. Conclusions
The main results of the foregoing analysis are:

1. Analytical expressions have been obtained for the
mean value, 7z g, of the efficiency of convergence of
the method of Fourier synthesis. 7z g is ultimately
expressed as a function of U = 274/dy;,., where 4 is
the r.m.s. error per atomic coordinate.

2. It is found (in agreement with the indications in
Part I) that 7y g~7g,, where 75, is the efficiency
of the correspondingly weighted methods of steepest
descents and least squares. However, two important
features are that (a) 7ps > 7sp. always, but
Mr.5. = Ng.p. Tor both small and large U, and that
(b) in the range of moderately large errors (corre-
sponding to 0-2 < 7 < 0-6), 75 is greater than 7g
by a factor of about 1-3.

3. Since the r.m.s. correction, A, per coordinate
given by any refinement is different from the actual
error, A, graphs are drawn for 7,g against U, =
274 [dnin., and also against the convergence ratio,
o = (4.)/(4.);, of two successive refinements. The
graphs of #r s against U, show a maximum value of
U., and are therefore double-valued; the g curves can
be used to overcome the consequent ambiguity.

4. It is also shown that for discriminating between
the two branches of the 7 against U, curves, it is

sometimes advantageous to use the practically linear
graphs for 7 against R;, where R; is the correspond-
ingly weighted reliability factor,

SWH|F,|~|F )|~ SW|F,
hkl hkl

calculated for the reflexions used in the Fourier syn-
thesis. It is found that n >} when R, < 0-45, ap-
proximately.

5. As an incidental to these calculations, R, is also
graphed as a function of U for various values of the
weighting function, W2. These graphs should be useful
for estimating the error, A (= dmn x U/27) from a
single calculation of R; (cf. Luzzati, 1952).

6. For comparison with the results of Part I on the
methods of steepest descents and least squares, we
have used the optimum value of the weighting func-
tion, which is, in this case, W2f < d’, v ~n+2 for
n-dimensional summations. However, because Fourier
syntheses are usually not weighted, all the calcula-
tions have also been carried out for the case of W2 —
constant, for both two- and three-dimensional sum-
mations. The 7y g curves for these cases fall much
more rapidly than for optimum weighting; the curves
for 7rs. against R; are an exception, the linear ap-
proximation, 7 ~1—R;/0-828, being still valid. For
unweighted syntheses, values of # < } (correspond-
ing to B; > 50%) cannot be used with any confidence.

7. It is perhaps pertinent to point out that, in view
of general considerations of ‘contact’ of atoms, and
also the analysis for overlap of atoms in projection,
etc. (Qurashi & Vand, 1953), the foregoing a.nalysis
is meaningful only if /3.4 < }x(mean interatomic
distance)~0-7-1-0 A, i.e. if 4 is less than about 0-5 A.
With Cu K« radiation, this gives Uyee~4. It is seen
from the graphs that, for values of U between 2 and 4,
7r.s. for unweighted refinement is of the order of 0-1,
whereas when optimum weighting is used, the corre-
sponding values are of the order of 0-5; this very
significant improvement in the initial stages of refine-
ment should outweigh the increased labour of properly
weighting the Fourier synthesis or other refinement
technique used.
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APPENDIX 1

Probability distribution of ¢, when ¢, and ¢,
are given

The distribution is bounded by two conditions, viz.
(Pedimo = Qo (Perdi=1 = @ -

However, ¢, and ¢, are mutually correlated, as can
be seen by calculating @,p,:

Qo = (2 2 N, cos v;,)(2 2 N cos (v;,— 6vj,))

= 22 N? cos 6v,~o = 22N?(1—2 sin? £dv;,) # 0
) i

To make the conditions independent and symmet-
rical, we replace them by two linear combinations of
@, and @, putting }(v;,+v;) = Vjm:

Psin = $(@o—@c) = 2 3 N} (cos vj,—cos vy,)
i

= —2 3 N, sin vj,, sin $6v;, ,
7
Peos = 3 (@o+ @) = 22 Njé (cos v;,+cos V)
j
= 2 3 N, cos v;,, cos $0v;, .
)

It is easily verified that @sn@eos = 3{@e—g¢3) =0, so
that @gn and @qs are independent boundary values
for the distribution of @,. If we put (3—¢)dv;, = Avy,
then @, can be written as

= 22 N;cos vy = 22 N; cos (vj,+Avy)

= ——22 N, sin v, sin Av7,+2 2, N; cos v, cos Avy
i

= (Psxn+bz¢cos
+2 3 N,[sin vj,(a, sin $0v;,—sin Avy)
i

+ €08 ¥}, (08 Av;,—b, cos §dvj)] (15)
Because @sin and @cos are not correlated, we have to
adjust a, and b, independently so as to minimize the
r.m.s. value of the third term in the above expression.
Noting that sin v}, cos v, = 0, the condition for this
becomes:

sin v}, sin £ 6v;,(a, sin }6v;,—sin Av;) = 0

= cos? v, cos 0vj, (cos Av;— b, cos §dv;,) ,

ie. a,sin®}dév;,—sin }dv;, sin Av;, = 0

= b, cos? }0v;,— cos }dv;, cos Av;,,

which is equivalent to

a, sin? $6v;, = sin }dv, sin (3 —1)dvy,

b, cos? }0w;, = cos v, cos (§—£) vy, .

Because the distribution of 0v;, is closely Gaussian
(Part I, Appendix 2), these expressions can be eval-
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U, and J/(u?) = w):

o0 /‘2 d o0 ‘LL2 d
= SO Co8 au exp [—%2'] #/SO exp [—2—’“2] u

— exp [—}a?u?],

uated as follows (on putting dv;, =

cos ay

so that

@, = sin §u sin (3—t)p/sin® $u
= (cos ut—cos (1—t)u)/(1—cos u)
= (exp [—$u*#*] —exp [—§u*(1-1)%])/
(1—exp [—}u2)), (16a)

“Du/co ip

b, = cos $u cos (3
— (c0s pi-+cos (T—H)u) 1+ cos 1)
= (exp [—3u**] +exp [—$u*(1-1)*])/
(I+exp[—3u?]). (16b)
It is readily seen that these values of @, and b,

give the mean value of ¢, so that the complete ex-
pression for ¢, can be written

Pa = U3 (Po—@e)+D3 (@0t @) 10, (9?)F
_bl¢0+é( bt (Po (pc)ict( ) )

where the third term has a random distribution, and

(7

¢ = (@, sin $u—sin (3 —t)u)?+ (cos (3—

¢, is a maximum for ¢ = §, i.e. when the structure
(corresponding to ¢,) is exactly half-way between
those corresponding to ¢, and to ¢, For this special
case, a, =0, so that ¢, = bé.%(qJ‘,thpc)ici((pz)&,
where

t)u—b, cos Fu)2.

b, = 2 exp [—u?/8]/(1+exp [—%?/2]) ~1+%?/8
for small  ,
¢y = {1-2 exp [—u?/4]/(1+exp [—u?/2])} > )2. 428

for small % .

b, and c, are plotted as functions of » in (Fig. 7a),

1-04
0-8

0-6

0-4

0-2

0-0

l
Po \‘Pc
Fig. 7. (a) Curves for by and ¢, as functions of u = 2n4/d.
Note the initial rise of b; to a maximum at % ~ 1-5.

(b) Typical probability distributions of ¢ for small and
large u.

0 1 2 3 4 5 0
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and two typical distributions of ¢, are shown in
Fig. 7(b), one for small » and the other for large .

It is interesting to note that whereas ¢, is a mono-
tonic increasing function of %, b, first increases
(approximately as 1+wu2/8) for small %, and then (for
large u) decreases as 2 exp [—u?/8]. Thus b, attains
a maximum value of 1-140 at u = (2 log 8)} = 1-48;
the initial increase is a consequence of the fact that

cos 3(A+B) ~ 4 (cos A+cos B)(1+(4—B)?¥/8),

while the exponential drop for large « is caused by the
increasing randomness of the ¢ and d¢ distributions.

Finally, we evaluate the first derivatives of @, and
b, since these are required in minimizing the residual,
R(t). We get

da,
@ {w?/(1—exp [—3u?))}
X {t exp [ —§u?]+ (1 —t) exp [—$u?(1-1)4]},

— = = {u?] (L+exp [—}u2)}

(18)
x{texp[ $ut?]—(1—¢) exp [ — Ju?(1—¢)%]} . l

APPENDIX 2

Evaluation of ( 3 PoPet/ > 1) = x(F)
hkl Kl
We first obtain

(1) = (2 Po@el = 1) .
hil wl /o
The probability distribution of ¢, is
@n )*GeXP[ @5/(20%)]dg, ,
and, given ¢,, the distribution of dp = (p,—@.) is

exp [—(0p—y19,)*/ 20%y3)1d (dg) ,
= (1—exp[—}v?]), p,=(1—exp[—u?])t,
cf. Part I, Fig. 7 and equation (8d). It follows, on

1
(27‘)*072

putting ¢, = y and dp = z;, and therefore ¢, = (y—2,),
that
2 o0
D= —u = —y2/(202
1) = ismiar ). Y]

o0
X (§ y(y—z,) exp [—(21—71y)2/(2027§)]d21>dy

vz =y

— _1___ °° —n2 2 e 2__
,,azyz(syzoexp[ ¥#/(20%)] Shyu_m (82— 713?)
x exp [~ (2')2/(20%y})]dz’ dy
-\ exp[~97/(20%)] | v
y=0 Z=y(1—y)
x exp [—(2')?/(202y3)]dz’ dy) @' =2,—pY)
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1 ( ® g
=——((1- g 2 exp [—#2/ (202 S
o2y, yl)-y=oy P [~4%/(20)] =yl o
x exp [(—2")2](2) p,0dz""dy
—y%cr*S y exp [—9?/(20%)— (1 —p,)? 2/(2<727'§)]dy)
Y=o

(" =2[2)}p;0) .
Making use of the relations,

Y =2l(Il=p1), 7% =2%(1+p?,
and putting
1—y1 y ..
we gob Y@ T @~

2(1) = ”“(47» "ZS, (') exp [—y%y"™]

XS exp [—2"2]dz" dy’ — S yexp [—y%/( 2?202)]dy)
v

-2

+2 Sy= exp [—%y'?] (S

exp[—y y’zlyS exp [—z"zldz”i
y'=0

exp [—2''?] dz") dy

Yy
-2 S y'exp [—y%y'2—y'?] dy’} - 7%}
y'=0

2
=227 {0+ (bant )y —1/(14+5%) 3}
cf. derivation of equation (10a) in Part I.

When the value of ¢ is different from unity, we must

replace @, = (y—2,) in the above calculation by
Par = bipo+ Ha—b) (po— @)@} after equation (17)
= by+1(a,—b)z+c0.

In carrying out the very first integration with re-
spect to z;, the effect of the term +c¢,0 disappears,
and after further simplifications (as for x(1)), we
finally get

o=t
“pony )lfyl("a“;l”—liye)J
“gal{rabn (i)

s o)
e e}
et (1) (el

-1

[
N)] Q

~<+

—
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_ a2 tan—ly = Y
=% [a,,{'y2 (l— " ) + (ta,n y— l+y2>}

tan—1y B Y
—bt {)’2 (l— ” ) —_ <tan 1 Y- 1+y2>}]

p
=3, [a,l,+b,13], (19a)

where
I',={(1—exp [—u?])} —exp [—u?/2]tan~1 (exp [u2] —1)#}
+ {tan—1 (exp[#?]—1)} —exp [—u?/2] (1 —exp [ —u?])*}
— (1—exp [—u2/2]) {tan-" (exp [u?] 1)}
+(1—exp [—u?])}},
Iy = (1+exp [—u?[2]) {tan~! (exp [u?]—1)}
—(1—exp [—u])}}.

(198)

APPENDIX 3

In the discussion of the curves for 75 against
U, p, etc., we have ignored the influence of (1) statis-
tical fluctuations in the averages used for calculating
the residual, R(¢), and (2) ‘diffraction effects’ due to
neighbouring atoms, which can also be treated as
series-termination errors.

The first effect corresponds to that discussed in
Part I, Appendix 2(d), and can be represented by a
fluctuation (4#),, where, for a 2-dimensional summa-
tion with N terms,

{3 = {3(1—n) NP~ 1454/ U  (n<3}).

An exact treatment of the second effect is a little
difficult, but if we make use of the discussion (cf.
Qurashi & Vand, 1953, § 3) for atoms overlapping in
projection, and take 6 (~ 1-5 A) as the average dis-
tance (in projection) of an atom from its six nearest
neighbours, the uncertainty (47%), due to this cause
can be estimated as*

{(An)3}~2C|U(8) = 20dmin|(276) = 2C(4]8)|U ,

where C~1 for optimally weighted Fourier syntheses
(W2f e d, v=mn+l, or » + 2), and C~2-5 for un-
weighted syntheses. Thus the total uncertainty, 47,
for a 2-dimensional synthesis is given by

{(dn2}t = {(An)+ ()i} =~ {(1-45u,/U)*
+40%(A[6)2| U2}
(6 =144).

= (1-45/U) (u+C242%)*

Now, we can take {(4%)}}* <7 as a limiting cri-
terion for reliable convergence, because this gives 859%,
probability that (7-+4n) still has the sign of 5. Ap-
plication of this criterion gives the following results:

* It is well to note that the effect will be proportionately
greater if one or all of the neighbouring atoms are heavier than
the atom under consideration.
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(@) v =n+2
72 (13 —ug)2(ug | Ut K (g UYF (7 < 07, K ~1),
whence the limiting condition is

K(uo/U)gt > (1-45/U)('u3+A2)*
= 1-45(uo/ U) (1 + (4 [ue)®)},
whence
(uo/U)¥ < (K[1-45)[(1+ (A [ue)?)?,
so that
7 = K (ug|U)} < (K31-45)(1+ (o)) %

Since uy = (27/dmgx. )4 ~ A With dmex. ~ 8 A, we finally
get
7 < K*?/(J1-45x )/1-41)~ J3K32 ~ 0-7 ,

which is always satisfied when there are a large
number of terms in the summation. It is interesting
to note that there is no lower limit to the useful values
of 7 in this case, although of course u, is limited to
being less than unity (approximately), which corre-
sponds to 4 < 1 A, a needlessly generous limit.

b) » =n+1
7n~0-55/U
whence for the limit,
0-55/U > (1-45[U) (u3+A2)}
& (145/U)(2upd)t = 145 (t]U) (dunax )%,
(4 = Up@max.[(278) ~ %) ,

(n <03),

whence
%y < (0-55/1:45)(r/dmax.)},
ie.
U~ (dmax./dmin.)uo < (0'55/1'45)(ndmax.)%/dmin. ’
so that finally
7 = 0:85/U > (1-45/)/7)dmin.| )/ dmax.~ 02

for a cell side of the order of 8 A, and using all the
reflexions observable with Cu K« radiation. This shows
that all the region 0-2 < 7 < 1-0 gives good con-
vergence. This lower limit for 7 quite naturally de-
creases as the number of reflexions used increases.

(¢) v = 1-5 (unweighted synthesis)
We can anticipate from the above results that the
lower limit for 7 will be fairly high in this case.
Now,
n~exp [—0-7U]

(to within 209 in the range 0-1 < < 1-0)
and for this case ¢ = 2-5, whence
(Dt~ (1-45]U) {ul+ (2-54)2}
= 145 2:5(4]U) {1+ (0-4u,/4)?}},
whence we get for the limit,

7 > 3-62(4]U) {1+(0-duo/A)3,
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ie.
3-62A{1+(O-4u0/A)2}* < Ux7y = 05101
(0-15 < 5 < 0-75) ,
whence

U =270 |dmin, < (270/drain.) (0-5/3-62)

{1+(0-duy/4)2}} ~0-8/dy, ,
so that

7 = exp [—0-7U] > exp [~0-56/dmin]~ 05,

for the reflections within the limiting sphere of Cu K«
radiation. Now, this limit on 7 corresponds to
R; < 459%, and provides some justification for the
usual bias against attempting the refinement of an
approximation with a reliability index greater than
50%. This is to be contrasted with the properly
weighted syntheses, for which the useful upper limit
of R; is considerably higher. Similarly the upper limit
of %, (and A) increases progressively as we go from
case (c) to case (a) above.

Finally, we must note that the value of the fluc-
tuation A7 is not the same for all three coordinates
of any one atom. This follows from the fact that only
corresponding coordinates of neighbouring (or over-
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lapping) atoms are involved in the equations for the
separate shifts (cf. Qurashi & Vand, 1953, equation
(9)). However, it appears that the fluctuation (dn),
is the same for all three coordinates. Thus we get

Ny = 7_]+(A17)1+(A77)2,z s
773/ = 7_7+(A77)1+(An)2,y s
N, = 77+(A7])1+(A77)2,z .

Since (0%)cale, = 72(0%)obs., €te., it is readily seen that
when {(47)3}} is comparable with 7, the calculated
vector shifts can differ very considerably in direction
from the actual shifts required. Since (An):~ (47),
this effect is small within the limits of useful % cal-
culated earlier, because {(49)2}* < 7/y2.
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This instrument (called SUMCOS) assists in the calculation of X cos (hzj+ky, +1z;) by hand.

i
It does this by forming cos (hx;+ky;+1z;) separately for ten atoms, and simultaneously presenting
the values of these ten cosines ready for addition for any given (&, k, ). The final addition must be

done by hand.

The values of cos (hz;+ky;+1z;) are derived from a table of cos hx; by using a simple mechanical
arrangement to shift the origin of this table by (ky;+1z;). The values are presented for addition by
switching on a small light behind the particular value of cos hz; on the table, which is written on
translucent material. New values of cos (hwj+ky;+1z;) are presented for successive k simply by
turning to the next position of a 24-position switch.

1. Introduction

Part I of this paper (Radoslovich & Megaw, 1955)
described a device for moving the origin of a table of
cosines by any arbitrary amount (ky+Iz) in order to
read cos (hx+ky+Iz) from a table of cos hz. It con-
sisted of a box carrying a fixed scale and two tables
on a movable chart, so that shifts of origin could be
made easily and rapidly. The usefulness of this box in
calculations for triclinic and monoclinic space groups
was pointed out.

Such a box speeds up calculations dealing with one
atom at a time. In most calculations, however, we are
concerned with several chemically identical but crys-
tallographically distinct atoms, and we are therefore
interested in the quantity

N
2 cos (hz;+ky;+lz)) ,
=0

where the summation is over N chemically similar
atoms. This could be computed rapidly if the values of



